КОМИТЕТ ПО БЛАГОУСТРОЙСТВУ САНКТ-ПЕТЕРБУРГА, 2017 – 2018

Цель работы: программная реализация алгоритма поиска оптимального маршрута движения специализированной техники при осуществлении уборки дорог общего пользования регионального значения для заданного горизонта планирования.

ИСХОДНАЯ ИНФОРМАЦИЯ

МНОЖЕСТВО ДОРОГ

Характеристики опорной точки перекрестка

Тип

Связанные участки дорог

Взаимосвязи между участками дорог

Q

Характеристики участка дороги

Координаты начала и конца

Длина дорожного полотна

Количество полос

Интенсивность движения

ПАРК УБОРОЧНОЙ ТЕХНИКИ

Характеристики транспортного средства

Модель

Средняя скорость движения

Вместимость баков

िं

Правила уборки

Порядок осуществления уборки

Частота и периодичность

ОГРАНИЧЕНИЯ И КРИТЕРИИ ОПТИМИЗАЦИИ

- все требования технологического регламента уборки для соответствующих типов дорог должны быть выполнены;
- учет правил дорожного движения;

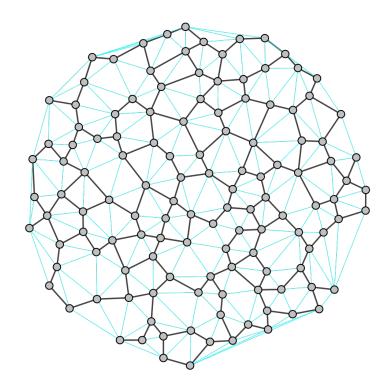
- все требования технического обслуживания транспортных средств должны быть выполнены;
- длина каждого маршрута должна соответствовать техническим возможностям уборочной техники.

/ F1

Минимизация длительности самого долгого маршрута

с учетом величины штрафа на осуществление левостороннего поворота и разворота

/ F2


Минимизация суммарной длительности маршрутов

с учетом величины штрафа на осуществление левостороннего поворота и разворота

/ F3

Равномерность распределения нагрузки между маршрутами для парка уборочной техники

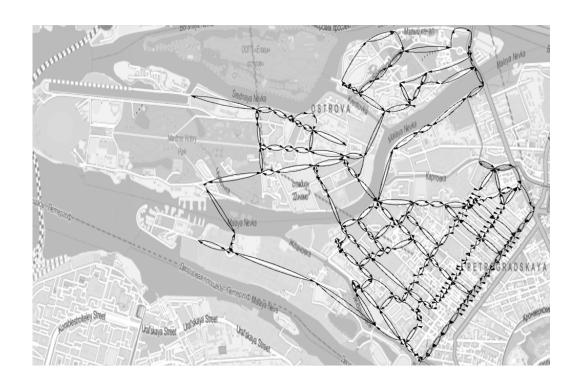
ЗАДАЧА О ПОИСКЕ МИНИМАЛЬНОГО ОСТОВНОГО ДЕРЕВА

Задача построения маршрутных карт уборки автомобильных дорог была сформулирована как задача маршрутизации транспорта по дугам графа (ARP) с использованием моделей:

- поиска минимального островного дерева;
- оптимальный обхода подграфа. Для ее решения применены точные методы комбинаторной оптимизации.

МЕТОДОЛОГИЧЕСКИЙ И ТЕХНОЛОГИЧЕСКИЙ СТЕК

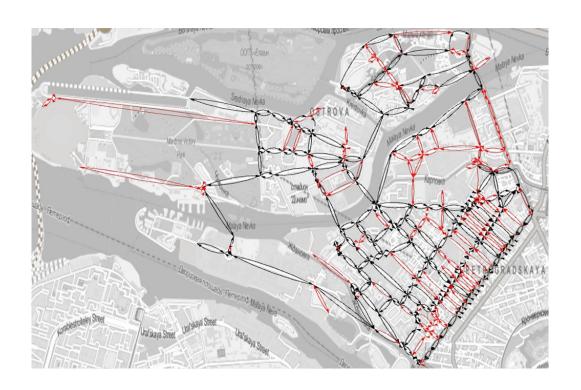
- алгоритм получения исходных данных об уличнодорожной сети Санкт-Петербурга;
- эффективный алгоритм формирования графовой модели улично-дорожной сети Санкт-Петербурга;
- метод ветвей и сечений;
- целевое программирование для решения многокритериальных оптимизационных задач.



об участках дорог

импорт и обработка данных, формирование оптимизационной модели поиск глобального оптимума

ЧИСЛОВЫЕ РЕЗУЛЬТАТЫ: «ЛЕТНЯЯ УБОРКА»


Дороги, которые были обслужены уборочной техникой с 8:00 10.04.2017 по 8:00 14.04.2017

Графовая модель дорог Петроградского района

354 вершины 1179 дуг (участков дорог)

- 807 участков класса «А» (ежедневная уборка)
- 295 участков класса «Б» (уборка через день)
- 39 участков класса «В» (уборка раз в четыре дня)
- 38 участков без уборки

ЧИСЛОВЫЕ РЕЗУЛЬТАТЫ: «ЛЕТНЯЯ УБОРКА»

Показатели	Реализованные маршруты	Оптимальное решение
Длина всех маршрутов	247 км	535 км
Длина полезных проездов	179 км	380 км
Выполнение плана уборки	46,6%	100%
Доля полезных проездов	_	71%

Дороги, которые обслуживает уборочная техника в сформированных оптимальных маршрутах