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ВВЕДЕНИЕ. 

Актуальность темы диссертационного исследования. В условиях 

усложнения технологических процессов и растущих требований к точности 

данных традиционные методы становятся недостаточными. 

Единая система газоснабжения (ЕСГ) России – крупнейшая в мире 

централизованная сеть добычи, транспортировки, хранения и распределения газа. 

Она включает более 170 тыс. км магистральных газопроводов, около 250 

компрессорных станций с общей мощностью свыше 46 тыс. МВт и подземные 

хранилища газа. Эффективность её функционирования зависит от технического 

состояния оборудования, баланса спроса и предложения и внешнеэкономических 

факторов. 

Интеграция технологий машинного обучения, анализа данных и 

эволюционных алгоритмов в процессы планирования и прогнозирования расхода 

топливного газа (ТГ) позволяет повысить точность управленческих решений и 

сократить эксплуатационные издержки. 

Актуальность исследования также обусловлена необходимостью 

объединения технических и экономических факторов в рамках единой 

оптимизационной модели. Многокритериальные подходы позволяют учитывать 

как технологические, так и стоимостные параметры, способствуя минимизации 

затрат и росту эффективности ГТС. 

Диссертация направлена на решение научной и прикладной задачи: 

разработку моделей и инструментов для точного прогнозирования, оптимизации 

режимов работы и построения системы поддержки принятия решений (СППР), 

ориентированной на экономически обоснованное управление потоками 

природного газа.  

Степень разработанности научной проблемы. Вопросы моделирования и 

оптимизации режимов функционирования ГТС широко представлены в 

отечественной и зарубежной литературе. Зарубежные исследователи активно 

используют методы машинного обучения, нейросети и современные 

оптимизационные алгоритмы при прогнозировании потребления газа и 
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транспортных потоков (Goncu A., Taskinen A., Brabec M., Gill S., Deferrari J., 

Kashani A.H., Bonnans J., De Wolf D. и др.). Однако в их работах, как правило, 

недостаточно внимания уделяется экономической эффективности решений, их 

применимости к реальным условиям функционирующих ГТС и отраслевому 

регулированию, что и составляет предмет настоящего исследования. 

В отечественных исследованиях основное внимание сосредоточено на 

построении математических моделей компрессорных станций (КС) (Кулик В.С., 

Курбатова Г.И.), симуляции потоков (Белинский А.В., Марченко С.Г.), 

прогнозировании потребления газа (Дубинский А.В., Панкратов С.Н., Лобанов 

А.Н.), управлении запасами (Кисленко Н.А., Косова К.О.) и расходом на 

компримирование (Кудрявцев А.А., Ряжских В.И.). Используемые подходы 

преимущественно основаны на детерминированных моделях, слабо 

адаптированных к условиям неопределённости и экономической волатильности. 

Применение методов машинного обучения и эволюционных алгоритмов в задачах 

оптимизации транспортных процессов остаётся слабо разработанным 

направлением в отечественной науке. 

Актуальной остаётся задача интеграции технических и экономических 

факторов в единый процесс принятия решений. Большинство существующих 

моделей решают либо чисто технологические, либо экономические задачи, в то 

время как многокритериальные подходы находятся в стадии становления. 

Настоящая работа направлена на восполнение этих пробелов и разработку 

инструментов, обеспечивающих экономически эффективное управление 

потоками природного газа в условиях неопределённости и динамики внешней 

среды. 

Целью диссертационного исследования является разработка и 

обоснование методов и инструментов для повышения точности, достоверности и 

экономической эффективности управления ГТС путем интеграции современных 

технологий машинного обучения, анализа данных и эволюционных алгоритмов. 

Для достижения поставленной цели необходимо решить следующие задачи: 
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– разработать методы управления качеством данных, направленные на 

идентификацию ошибок, выявление аномалий и анализ достоверности 

получаемой информации, позволяющие учитывать отраслевую специфику и 

отвечающие более широкому кругу практических ситуаций по сравнению с 

существующими подходами; 

– разработать методы корректировки ошибок и восстановления 

пропущенных данных на основе горизонтального и вертикального анализа 

взаимосвязанных режимно-технологических и учетно-балансовых показателей; 

– построить модели прогнозирования расхода топливного газа по 

балансовым зонам и в целом по газотранспортной системе на основе 

ретроспективных данных, позволяющие существенно повышать качество 

прогнозов по сравнению с традиционными методами; 

– разработать интегрированный подход к многокритериальной оптимизации 

режимов транспортировки газа, учитывающий технические и экономические 

показатели функционирования системы и принципиально отличающийся от 

традиционных однокритериальных подходов; 

– разработать прототип системы поддержки принятия решений в области 

управления потоками природного газа масштаба ЕСГ, интегрирующий модели 

управления данными и прогнозирования, и алгоритмы многокритериальной 

оптимизации; 

– предложить современный подход к оценке экономической эффективности 

разработанного инструментария на основе сравнительного анализа затрат и 

выгод, позволяющий, в отличие от традиционного директивного подхода, 

учитывать фактическую ставку дисконтирования, отражающую реальную 

структуру капитала и условия функционирования газотранспортной отрасли. 

Объектом исследования являются экономико-организационные процессы 

управления ЕСГ Российской Федерации как отраслевым элементом топливно-

энергетического сектора, включающим магистральные газопроводы, КС, системы 

хранения природного газа и деятельность ГТО. 
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Предметом исследования являются методы и инструменты повышения 

экономической эффективности управления газотранспортным комплексом, 

включая информационно-аналитические технологии СППР, методы 

статистического анализа, повышения точности прогнозирования и оптимизации 

режимов работы с использованием инструментов машинного обучения, анализа 

данных и эволюционных алгоритмов. 

Теоретическую основу исследования составляют результаты исследований 

современных отечественных и зарубежных ученых в области экономико-

математического моделирования, теории управления, машинного обучения и 

эволюционных алгоритмов, а также многокритериальной оптимизации, обработки 

данных и анализа неопределённости в ГТС. 

Методология исследования, проведенного в диссертационной работе, 

помимо общенаучных подходов (анализ, синтез, индукция, дедукция, логическое 

моделирование и системный подход), основана на использовании следующих 

специальных научных направлений: 

– методов экономико-математического моделирования; 

– методов машинного обучения; 

– подходов к многокритериальной оптимизации, в первую очередь 

эволюционным алгоритмам; 

– методов модульного и объектно-ориентированного программирования; 

– методов статистического анализа и обработки данных; 

– элементов теории графов и теории нечётких множеств; 

– методов принятия решений в условиях неопределённости. 

Информационной базой исследования являются технологические и 

учетные ретроспективные режимно-технологические и учетно-балансовые 

данные газотранспортных компаний, результаты научных публикаций, 

аналитические отчеты отраслевых организаций, а также данные, полученные в 

результате компьютерного моделирования. 

Обоснованность результатов исследования обеспечивается 

проработанностью темы диссертационного исследования с использованием 



7 
 

статистических методов анализа, современных методов математического 

моделирования, сравнительным анализом предложенных подходов с 

существующими методами управления ГТС, а также верификацией полученных 

данных на реальных и смоделированных сценариях эксплуатации. 

Достоверность результатов подтверждается применением статистических 

и математических методов к ретроспективным режимно-технологическим и 

учетно-балансовым данным, апробацией полученных результатов исследования 

на международных и российских научно-практических конференциях, 

публикацией итоговых результатов проведенных исследований в открытом 

доступе.  

Научная новизна диссертационного исследования заключается в 

разработке методов управления качеством данных для идентификации и 

корректировки ошибок и аномалий с введением интегрального показателя 

статистико-экономического эффекта AIVI. Построены модели прогнозирования 

расхода топливного газа, обеспечивающие повышение точности расчётов по 

сравнению с традиционными методами. Предложен многокритериальный подход 

к оптимизации режимов транспортировки газа, отличающийся возможностью 

совмещения технических и экономических критериев. Впервые создан прототип 

СППР масштаба ЕСГ, интегрирующий прогнозные модели и алгоритмы 

оптимизации. Разработан метод оценки экономической эффективности с 

использованием WACC, позволяющий учитывать фактическую структуру 

капитала вместо директивной ставки. 

Соответствие диссертации паспорту научной специальности. 

Содержание диссертации соответствует следующим пунктам паспорта 

специальности 5.2.2. Математические, статистические и инструментальные 

методы в экономике: п. 3. – «Разработка и развитие математических и 

эконометрических моделей анализа экономических процессов (в т.ч. в 

исторической перспективе) и их прогнозирования»; п. 4. – «Разработка и развитие 

математических и компьютерных моделей и инструментов анализа и оптимизации 

процессов принятия решений в экономических системах»; п. 17. – «Развитие и 
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применение инструментария разработки систем поддержки принятия решений в 

сфере экономической политики и обеспечения национальных интересов». 

Наиболее существенные результаты исследования, обладающие научной 

новизной и полученные лично соискателем: 

– разработаны методы управления качеством данных и их достоверностью, 

обеспечивающие минимизацию ошибок и аномалий в технологических данных; 

– созданы алгоритмы идентификации и корректировки ошибок в режиме 

реального времени на основе методов машинного обучения, предложен 

интегральный показатель статистико-экономического эффекта работы модуля 

детекции аномалий (AIVI); 

– разработаны подходы к прогнозированию расхода топливного газа на КС 

с учетом динамических изменений эксплуатационных условий, предложен 

механизм экономической оценки внедрения прогнозных моделей; 

– предложены методы многокритериальной оптимизации режимов работы 

ГТС с учетом экономических и технических факторов; 

– разработан прототип интегрированной СППР для диспетчерского 

управления потоками природного газа, позволяющая повысить эффективность 

работы газотранспортных предприятий; 

– проведена оценка экономической эффективности разработанных методов 

и алгоритмов на основе сравнительного анализа с традиционными подходами. 

Теоретическая значимость исследования заключается в развитии научных 

основ управления потоками природного газа на основе методов машинного 

обучения и эволюционных алгоритмов. В работе формализованы математические 

модели прогнозирования и оптимизации транспортировки газа, предложены 

новые подходы к многокритериальному анализу решений, а также обоснованы 

методы обработки и корректировки данных в условиях неопределенности.  

Практическая значимость исследования заключается в разработке и 

внедрении методов и алгоритмов, способствующих повышению экономической 

эффективности управления ГТС. Полученные результаты могут быть 

использованы для оптимизации режимов работы транспортировки природного 
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газа, прогнозирования расхода топливного газа и снижения эксплуатационных 

затрат путем интеграции разработанных инструментов и методик в 

автоматизированные системы диспетчерского управления газотранспортных 

предприятий. 

Апробация результатов исследования. Основные положения и результаты 

диссертационного исследования прошли апробацию на 11 международных и 

всероссийских научных и научно-практических конференциях и отраслевых 

семинарах. Наиболее значимыми из них являются: 

– семинар компании Wintershall Dea GmbH «Цифровизация бизнес-

процессов»; 

– отраслевой семинар ООО «НИИгазэкономика» по вопросам применения 

цифровых технологий и искусственного интеллекта в задачах диспетчерского 

управления системами газоснабжения; 

– международная научная конференция «Государство и рынок: евразийская 

доминанта развития в условиях формирования многополярного мира» (ФГБОУ 

ВО «СПбГЭУ»). 

Результаты исследования обсуждались в профессиональном научном и 

отраслевом сообществе и получили положительную оценку, что подтверждает их 

научную обоснованность и практическую значимость. 

Публикации результатов исследования. Основные результаты 

диссертационного исследования опубликованы в 14 научных работах общим 

объёмом 9,58 п.л. (личный вклад – 8,81 п.л.), в том числе в 6 публикациях общим 

объемом 6,31 п.л. (личный вклад – 5,94 п.л.) в ведущих российских 

рецензируемых научных журналах, рекомендованных Высшей аттестационной 

комиссией при Министерстве науки и высшего образования Российской 

Федерации для публикаций по научной специальности 5.2.2 – Математические, 

статистические и инструментальные методы в экономике. 

Структура и объем диссертации. Диссертационная работа состоит из 

введения, трех глав, заключения, списка литературы. Текст изложен на 178 

страницах машинописного текста, включает 33 рисунка, 34 таблицы. Список 
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литературы содержит 176 наименований, в том числе нормативные правовые акты 

и материалы глобальной сети Интернет. 

Во введении обосновывается актуальность комплексного повышения 

экономической эффективности управления потоками природного газа с опорой на 

математико-статистический инструментарий. Сформулированы цель и задачи 

исследования, отражающие необходимость разработки новых методов обработки 

и анализа информации, прогнозирования расходов и оптимизации затрат. Указано 

соответствие работы пунктам паспорта специальности 5.2.2: развитие 

математических и эконометрических моделей анализа экономических процессов и 

инструментов оптимизации в экономических системах. 

Первая глава «Методологические основы применения экономико-

статистических и математических методов управления потоками природного 

газа» посвящена анализу существующих отечественных и зарубежных подходов к 

управлению потоками природного газа, выявлению их недостатков, а также 

обоснованию необходимости перехода к экономико-ориентированным методам 

управления на основе математико-статистического инструментария. 

Вторая глава «Моделирование, выявление аномалий и экономическая 

оптимизация топливных затрат» посвящена разработке методов обнаружения и 

корректировки аномалий, восстановления пропущенных данных, а также 

введению интегрального показателя статистико-экономического эффекта – 

Anomaly Impact Value Index (AIVI), отражающего совокупный стоимостной 

результат функционирования системы детекции ошибок и аномалий. 

Третья глава «Моделирование, оптимизация и экономическое обоснование 

внедрения СППР » посвящена построению и апробации моделей прогнозирования 

расхода топлива и экономической оптимизации режимов работы 

газотранспортной системы с использованием нейронных сетей и методов 

эволюционных алгоритмов для повышения экономической результативности 

управления. 

В заключении подведены итоги диссертационного исследования, 

подтверждающие его вклад в развитие научной специальности 5.2.2. Сделан 
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акцент на значимости экономико-математического моделирования для 

управления потоками природного газа. Подтверждена научная и практическая 

ценность разработанных методов, обеспечивающих высокую точность прогнозов 

и обоснованность оптимизационных решений в стоимостном выражении. 
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1. МЕТОДОЛОГИЧЕСКИЕ ОСНОВЫ ПРИМЕНЕНИЯ ЭКОНОМИКО-

СТАТИСТИЧЕСКИХ И МАТЕМАТИЧЕСКИХ МЕТОДОВ УПРАВЛЕНИЯ 

ПОТОКАМИ ПРИРОДНОГО ГАЗА 

1.1. Экономико-статистические аспекты управления и прогнозирования в 

газотранспортной отрасли  

Газотранспортный комплекс является важнейшим элементом топливно-

энергетического сектора экономики Российской Федерации, обеспечивая 

транспортировку природного газа от месторождений до конечных потребителей. 

Эффективное управление потоками природного газа играет ключевую роль в 

обеспечении надежных поставок топлива, минимизации издержек и поддержании 

баланса между спросом и предложением на газовом рынке. 

Экономические аспекты управления газотранспортными потоками 

охватывают широкий спектр задач, связанных с оптимизацией расходов, 

повышением эффективности использования оборудования, обеспечением 

качества поставляемого ресурса и устойчивостью системы к внешним 

колебаниям. Основные цели экономического управления газотранспортными 

потоками включают: 

­ Минимизацию эксплуатационных расходов, включая затраты на 

топливо, электроэнергию и обслуживание инфраструктуры. 

­ Максимизацию пропускной способности ГТС без увеличения 

капитальных вложений. 

­ Оптимизацию режимов работы КС для снижения удельного расхода 

топливного газа. 

­ Обеспечение надежности и устойчивости поставок в условиях 

колебаний спроса и внешних экономических факторов. 

­ Снижение экологических рисков, связанных с утечками газа и 

выбросами углеводородов в атмосферу. 

Экономические аспекты управления газотранспортными потоками в первую 

очередь связаны с себестоимостью услуг по транспортировке газа. Совокупная 

себестоимость транспортировки природного газа складывается из нескольких 
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ключевых статей расходов: арендные платежи за использование основных фондов 

и их капитальный ремонт, оплата природного газа на собственные 

технологические нужды (СТН), фонд оплаты труда, затраты на материалы, 

отчисления в государственные фонды и другие расходы. Наибольшую долю в 

общей структуре затрат занимают первые три категории. 

На рисунке 1 представлена структура бухгалтерских расходов ПАО 

«Газпром» за 2022 год. Доля затрат на систему транспорта и надежности (СТН) 

составляет около 12% от общего объёма расходов, связанных с транспортировкой 

природного газа по магистральным газопроводам. Хотя данный показатель не 

является наибольшим по абсолютной величине, он характеризуется высокой 

степенью управляемости и потенциалом для оптимизации. 

 

Рисунок 1. Бухгалтерские расходы на транспортировку газа в 2022 году по данным 

ПАО «Газпром» 

Арендные платежи и фонд оплаты труда определяются договорными 

обязательствами и, как правило, слабо зависят от решений одной из сторон. В 

отличие от них, расходы на приобретение природного газа для нужд системы 

транспорта и надежности (СТН) находятся под контролем газотранспортного 
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предприятия и могут регулироваться в процессе принятия управленческих 

решений – как в рамках диспетчерского управления, так и при проведении 

технологической оптимизации. 

Как отмечалось ранее, одной из наиболее значимых статей себестоимости 

выступают затраты на природный газ, используемый для нужд СТН. Этот газ 

обеспечивает работу газоперекачивающих агрегатов компрессорных станций, 

необходимых для транспортировки природного газа по магистральным 

трубопроводам. 

На рисунке 2 представлена схема распределения расхода газа на СТН. 

 

Рисунок 2. Структура расхода газа на СТН 

Пример одного из дочерних ГТО ПАО «Газпром» иллюстрирует изменение 

доли затрат на приобретение газа для СТН в разные годы. В 2021 году этот 

показатель составил 23,5% от общей выручки, а в 2023 году снизился до 12,9%, 

оставаясь при этом значительной статьёй расходов. На рисунке 3 показана 

структура выручки по основным видам деятельности данного дочернего ГТО 

ПАО «Газпром» за период с 2020 по 2023 годы. 
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Рисунок 3. Структура выручки по обычным видам деятельности 

рассматриваемого ГТО, млрд руб.  

На рисунке 4 приведены ежедневные данные о расходе топливного газа и 

газа, используемого для нужд СТН, в одном из дочерних газотранспортных 

обществ ПАО «Газпром». Информация получена из подсистемы хранения данных 

модернизированной автоматизированной системы диспетчерского управления 

Единой системы газоснабжения (ПХ М АСДУ ЕСГ). 

 

Рисунок 4. Объем и доля топливного газа и газа  

на СТН в 2023 году, тыс. м3, % 



16 
 

Анализ представленных данных показывает, что в 2023 году на 

компрессорных станциях доля топливного газа, потреблённого для обеспечения 

нужд системы транспорта и надежности (СТН), достигла 76% от общего объёма 

газа, расходуемого на собственные нужды предприятия. 

 

1.1.1. Анализ методов и подходов к идентификации и корректировке 

аномалий в технологических данных 

Современные подходы к прогнозированию объемов транспортировки 

природного газа и топливно-энергетических затрат (Фомина и др., 2022 [77]), 

моделированию потребления газа (Панкратов и др., 2021 [50]), а также 

идентификации потоков, определению компонентного состава и оптимизации 

функционирования элементов газотранспортной инфраструктуры (Кисленко и др., 

2021 [32]) базируются на обработке значительных массивов исходных данных. 

Эффективность и точность управленческих решений напрямую зависят от их 

качества и достоверности. В связи с этим особое значение приобретает задача 

выявления и корректировки ошибок и аномалий в данных, поскольку именно от 

неё зависит устойчивость и безопасность функционирования системы 

газоснабжения. 

Причины возникновения ошибок и аномалий могут быть различными – от 

технических неполадок в системах сбора, передачи и обработки данных до 

человеческого фактора. Подобные искажения способны существенно влиять на 

результаты анализа, приводя к ошибочным прогнозам и, как следствие, к 

принятию неэффективных решений. Поэтому разработка и внедрение 

инструментов для автоматизированного обнаружения и устранения таких 

отклонений является приоритетным направлением. 

В научной литературе описан широкий спектр методов обработки 

аномалий – от традиционных статистических подходов (Chandola et al., 2009 

[102]) до современных алгоритмов машинного и глубокого обучения (Dau et al., 

2014 [106]). Однако выбор оптимального метода всегда должен учитывать 
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особенности конкретных данных и специфику технологических процессов 

газовой отрасли. 

В монографии Чару К. Агарвала «Outlier Analysis» (2017) [82] представлена 

систематизация и классификация современных методов обнаружения выбросов и 

аномалий, включая методы анализа временных рядов, что делает её одним из 

ключевых трудов в данной области. Особое внимание уделяется различным видам 

аномалий – точечным, контекстным и коллективным. Книга «Parametric Statistical 

Change Point Analysis and Finance» (2012) [104] Джи Чена и Арджуна К. Гупты 

посвящена методам анализа точек изменений в контексте финансовых временных 

рядов. Рассматриваются классические и современные методы обнаружения точек 

изменений. В издании «Practical Machine Learning: A New Look at Anomaly 

Detection» (2014) [110] Тед Даннинг и Эллен Фридман предлагают практический 

взгляд на задачи обнаружения аномалий с использованием методов машинного 

обучения. Представлены рекомендации по реализации алгоритмов обнаружения 

аномалий в проектах по кибербезопасности. Книга «Outlier Detection for Temporal 

Data» (2014) [117], подготовленная Гуптой М. совместно с соавторами (Гао Дж., 

Аггарвалом Ч., Ханом Дж.), фокусируется на методах обнаружения выбросов и 

аномалий в данных с временной зависимостью. Приводятся традиционные 

статистические методы и современные алгоритмы машинного обучения. В книге 

«Anomaly Detection for Monitoring: A Statistical Approach to Time Series Anomaly 

Detection» (2015) [123] Притам Джинка и Барон Шварц исследуют статистические 

методы для выявления аномалий в данных мониторинга временных рядов. 

Описаны примеры мониторинга IT-систем и даны рекомендации по настройке 

алгоритмов. Монография «Anomaly Detection: Principles and Algorithms» (2017) 

[126] Кишана Г. Мехротры, Чилукури К. Мохана и Хуаминга Хуана представляет 

собой систематизированный обзор алгоритмов обнаружения аномалий, включая 

деревья решений и нейронные сети. В книге «Обнаружение изменения свойств 

сигналов в динамических системах» М. Бассвиля [18] рассматриваются 

статистические методы, включая байесовские подходы и методы максимального 

правдоподобия. Книга «Модели, алгоритмы и программы обнаружения 
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нарушений при многомерном статистическом контроле процесса» (2015) Ю. 

Кравцова [33] посвящена методам многомерного статистического контроля 

качества, включая контрольные карты Хотеллинга. В издании «Последовательное 

обнаружение изменения свойств временных рядов» И.В. Никифорова [46] 

обсуждаются алгоритмы на основе байесовских подходов и кумулятивных сумм 

(CUSUM). Книга «Интеллектуальные методы обнаружения и прогнозирования 

аномальных событий в темпоральных данных» (2015) А. Суханова [65] посвящена 

нейронным сетям, методам нечёткой логики и генетическим алгоритмам. В 

диссертации «Разработка и применение методов обнаружения изменения свойств 

и прогнозирования временных рядов в задачах диагностирования АЭС» П. 

Белоусова [19] представлены примеры диагностики технических систем и 

прогнозирования сбоев. 

Хотя перечисленные литературные источники предоставляют обширную 

информацию о методах обнаружения аномалий и изменений в данных, они в 

основном фокусируются на универсальных подходах и не всегда учитывают 

специфику отраслевых задач. Для более точного и надежного анализа данных в 

контексте газотранспортной отрасли необходимо провести углубленное 

исследование, ориентированное на особенности технологических процессов, 

структуру данных и характер временных рядов. Важно изучить методы, 

позволяющие интегрировать физико-химические параметры газа, учитывать 

взаимосвязи между технологическими объектами и анализировать данные в 

условиях сложных сетевых структур. Кроме того, требуется разработка подходов к 

детекции аномалий, учитывающих контекст работы ГТС, включая ее 

динамическое поведение и зависимость значений параметров от 

эксплуатационных режимов. Результаты такого исследования могут существенно 

расширить существующие подходы к идентификации аномалий и предоставить 

новые эффективные решения для повышения надежности и эффективности 

функционирования газотранспортных сетей. 

1.1.2. Методы экономического учета топливно-энергетических затрат 
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Эффективное управление затратами на транспортировку природного газа 

играет ключевую роль в обеспечении устойчивости и экономической 

эффективности ГТС. В данном разделе рассматриваются методы учета и 

прогнозирования топливно-энергетических затрат, применяемые в газовой 

отрасли, а также подходы к анализу отклонений между расчетными и 

фактическими данными. 

В источнике [78] подробно описаны методы, применяемые ПАО «Газпром» 

для учёта и анализа затрат топливно-энергетических ресурсов, возникающих при 

транспортировке природного газа газотранспортными организациями. В 

документе приведены корпоративные нормативные акты, регулирующие процессы 

нормирования расходов ТЭР на транспортировку газа по газотранспортной 

системе, включая действующий стандарт СТО [6]. Согласно положениям этого 

стандарта, расчёт топливно-энергетических затрат выполняется с использованием 

специализированных программных комплексов, которые учитывают технические 

параметры КС, а также характеристики газоперекачивающего оборудования – 

количество агрегатов, их производительность и коэффициент полезного действия 

(КПД). При этом возможны погрешности измерений и расчётов 

энергоэффективности, обусловленные инструментальными или методическими 

факторами; их величина, согласно данным [6, табл. 9.1], может достигать 5,3–

10,1%. 

Расчёт потребностей в топливно-энергетических ресурсах для 

транспортировки газа традиционно базируется на проектных значениях, 

установленных в процессе строительства объектов газотранспортной 

инфраструктуры. Однако техническая документация зачастую не содержит 

исчерпывающих сведений о диапазонах рабочих параметров оборудования при 

отклонении от номинальных режимов. В результате программно-вычислительные 

комплексы, опирающиеся на эти проектные данные, нередко фиксируют 

расхождения между расчётными и фактическими эксплуатационными 

характеристиками КС и газоперекачивающих агрегатов. Такие различия могут 
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быть вызваны проведением ремонтных работ, заменой узлов или модернизацией 

оборудования с внедрением более современных компонентов. 

В документе [9] подробно исследуется взаимосвязь между 

энергетическими затратами и процессом транспортировки газа по 

газотранспортной системе. Рассмотрены ключевые факторы, влияющие на 

уровень потребления энергии, включая конструктивные параметры 

трубопроводов, режимы функционирования компрессорных станций и 

эксплуатационные условия сети. Также предложены практические рекомендации, 

направленные на оптимизацию энергетических расходов и повышение общей 

эффективности функционирования газотранспортной системы. 

В нормативном документе ПАО «Газпром» [6] представлен метод расчета 

энергетических затрат, связанных с транспортировкой газа по ГТС. Согласно [6, 

стр. 9, формула 6], суммарные энергозатраты на транспортировку газа по участку 

ГТС описываются кубической зависимостью от общего объема потока, 

умноженного на соответствующий коэффициент энергетического критерия 

(формула 1): 

𝑁ГТС𝑖𝑗
= 𝑥𝑖𝑗

3 ∗  𝑘ГТС𝑖𝑗
 (1) 

В ходе апробации методологии расчета энергетических затрат и анализа 

расхождений между фактическими и расчетными данными для определенного 

участка линейной части магистрального газопровода (ЛЧ МГ) «Ямбург-Тула 1,2», 

расположенного между двумя компрессорными станциями (КС-1 и КС-2), были 

выявлены значительные отклонения. В исследовании использовались данные о 

фактических транспортных потоках газа на данном участке за период с января по 

ноябрь 2019 года. 

На представленном рисунке ниже демонстрируется сравнение фактических 

и расчетных значений затрат на транспортировку природного газа по 

исследуемому участку, полученных с использованием программного комплекса 

моделирования и оптимизации режимов работы ГТС «Астра-газ». В процессе 

обработки исходных данных были исключены явные выбросы (ошибочные 

значения, внесенные в «Астра-газ»), а также удалены записи, содержащие данные 
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о транспортировке газа через КС при нулевом расходе. Далее, расход газа и 

электроэнергии на СТН был переведен в тонны условного топлива (т.у.т.), после 

чего была построена зависимость между фактическим (синие точки) расходом 

ТЭР и объемом транспортировки газа (рисунок 5) (в т.у.т.). Кроме того, на 

рисунке нанесена информация о расчетном (зеленые точки, расчет проводился с 

помощью ПВК «Астра-газ») расходом ТЭР и объемом транспортировки газа. 

 

Рисунок 5. Зависимость расхода ТЭР (в т.у.т) на СТН от объема 

транспортировки газа через работающие КС 

 

На основе анализа фактических данных была установлена эмпирическая 

зависимость фактического расхода топлива на СТН от расхода газа через 

линейный участок, представляемая полиномом третьей степени (далее – Модель 

П). 

На рисунке 6 изображен сравнительный анализ рассчитанных значений 

расхода топлива на СТН, рассчитанных по методике [6] и формуле 1 (далее – 

Модель Р, оранжевая линия), с соответствующими значениями, полученными с 

использованием Модели П для расчетных показателей (зеленая линия). 
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Для анализа качества прогнозных моделей использовалась метрика MAPE 

(Mean Absolute Percentage Error). Этот показатель отражает среднюю абсолютную 

процентную ошибку между рассчитанными и фактическими значениями и служит 

одним из основных критериев при сравнении точности различных моделей. 

MAPE определяется как среднее значение абсолютных отклонений прогнозов от 

реальных данных, выраженных в процентах, что обеспечивает наглядность, 

простоту интерпретации и сопоставимость результатов между различными 

подходами к моделированию. 

 

Рисунок 6. Зависимость расхода ТЭР в т.у.т на СТН 

от объема транспортировки газа через КС 

 

Для комплексной оценки качества прогнозных моделей дополнительно 

применялись статистические методы – t-тест (тест Стьюдента) и F-тест (критерий 

Снедекора – Фишера). Как отмечается, в частности, в работе [79], t-тест 

используется для определения статистически значимых различий между средними 

значениями двух выборок, что позволяет установить, насколько существенны 

расхождения между прогнозируемыми и фактическими данными. В свою очередь, 

0

1 000

2 000

3 000

4 000

5 000

6 000

7 000

8 000

20 40 60 80 100 120 140 160 180 200

Р
ас

хо
д

 Т
Э

Р
 н

а 
С

Т
Н

 (
В

 т
.у

.т
.)

Объем транспортировки газа через КС, млн м3/сут

Расход ТГ, определенный по Формуле 1

Расход топливного газа, определенный по полиному третьей 
степени



23 
 

F-тест применяется для анализа различий в дисперсиях между несколькими 

группами и служит инструментом проверки однородности вариаций показателей. 

Использование указанных методов обеспечивает объективную и надёжную 

оценку точности, устойчивости и статистической обоснованности разработанных 

моделей. В рамках данного исследования уровень значимости был принят равным 

α = 0,02, что позволяет с высокой степенью достоверности выявлять 

статистически значимые отличия между сравниваемыми выборками. 

В таблице 1 представлены рассчитанные значения MAPE, а также 

результаты t-теста (тест Стьюдента) и F-теста, используемые для оценки точности 

и статистической значимости различий между прогнозируемыми и фактическими 

значениями. Анализ этих значений позволяет определить уровень точности 

модели и выявить возможные отклонения, влияющие на качество 

прогнозирования. Для каждой модели проводилось сравнение средних значений 

абсолютных ошибок прогноза (MAE), а также дисперсий ошибок прогноза, 

рассчитанных как дисперсии между фактическими и расчётными значениями 

расхода топливного газа. 

Таблица 1. Сравнение показателей двух моделей 

Критерий Модель Р Модель П 

MAPE 193% 40% 

t-test 

t -20,2544 2,1764 

p 0,0000 0,0298 

Заключение о нулевой 

гипотезе 

Отвергаем нулевую гипотезу: 

средние значимо различаются 

Не отвергаем нулевую 

гипотезу: статистически 

значимых различий нет  

F-test 

F 324,8296 0,5203 

p 0,0000 0,4708 

Заключение о нулевой 

гипотезе 

Отвергаем нулевую гипотезу: 

группы имеют значимые 

различия в дисперсии 

Не отвергаем нулевую 

гипотезу: статистически 

значимых различий в 

дисперсии нет 

 

В ходе тестирования моделей были получены следующие результаты: 

­ Ошибка Модели Р значительно превышает аналогичный показатель 

Модели П, в среднем почти в пять раз. На участке линейной части 
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магистрального газопровода (ЛЧ МГ) «Ямбург-Тула 1,2» между КС-1 и КС-2 при 

расходе газа свыше 90 млн куб. м в сутки наблюдается четырехкратное 

расхождение между расчетными и фактическими значениями расхода топливно-

энергетических ресурсов (ТЭР) в тоннах условного топлива (т.у.т.). 

­ Модель Р не учитывает тот факт, что в отсутствие расхода ТЭР 

газовый поток может сохраняться на ненулевом уровне. На определенных 

интервалах, несмотря на значительные изменения расхода газа, фактические 

затраты ТЭР изменяются несущественно, тогда как кубическая зависимость, 

применяемая в методике Р Газпром, предсказывает кратное увеличение 

расчетных значений ТЭР. 

­ При сравнении моделей по результатам t-теста и F-теста Модель Р 

демонстрирует значительно худшие характеристики: значения p-уровня 

значимости равны 0,000 в обоих случаях, что свидетельствует о статистически 

значимых отклонениях прогнозов. Для Модели П p-значения составляют 0,0298 и 

0,4708 соответственно. Несмотря на то, что первое значение формально 

превышает установленный порог значимости (0,02), оно существенно ниже 

традиционного уровня 0,05 и указывает на наличие тенденции к статистической 

значимости. В совокупности полученные значения позволяют утверждать, что 

Модель П даёт более адекватное приближение к фактическим значениям расхода 

топливного газа по сравнению с Моделью Р.  

1.1.3. Обзор методов и подходов к прогнозированию потребления природного 

газа 

Прогнозирование потребления природного газа является важной задачей 

для эффективного управления ГТС. Развитие математических и статистических 

методов позволяет значительно повысить точность прогнозов, что критично для 

планирования добычи, транспортировки и распределения газа. В данном разделе 

рассматриваются основные подходы к прогнозированию, начиная с классических 

статистических моделей и заканчивая современными методами машинного 

обучения. 
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Прогнозирование потребления природного газа осуществляется с 

помощью разнообразных методов и техник, а также их комбинаций. Согласно 

исследованию Солдо (2012) [153], одной из первых моделей для предсказания 

потребления газа была кривая Хабберта, применявшаяся в 1950-х годах. С 1960-х 

годов с развитием статистических методов начали активно использоваться 

различные статистические подходы для прогнозирования. В конце 1970-х и в 

1980-х годах нейронные сети стали популярным инструментом для анализа 

данных. В последние годы появились новые методы прогнозирования, включая 

серые модели и генетические алгоритмы. 

Наиболее распространённым методом в данном исследовании является 

нейронная сеть и родственные технологии, такие как адаптивная нейронно-

нечеткая система вывода (ANFIS). Нейронные сети – это программы, которые 

через итерационный процесс обучения на основе исторических данных 

устанавливают связи между входными и выходными значениями для построения 

прогнозов (Zekić-Sušac и др., 2009 [165]). Джанг (1993) [122] предложил ANFIS 

как «нечеткую систему вывода, реализованную с помощью адаптивных сетей». 

Азаде и др. (2010) [90] отметили, что «ANFIS сочетает способности нейронных 

сетей к обучению с преимуществами нечетких систем, что делает её подходящей 

для моделирования и прогнозирования сложных временных рядов». 

Многие авторы использовали нейронные сети для прогнозирования 

потребления природного газа: Тонкович и др. (2009) [162], Кайнар и др. (2011) 

[125], Демирель и др. (2012) [108], Олгун и др. (2012) [140], Таспинар и др. (2013) 

[161], Солдо и др. (2014) [154], Изадьяр и др. (2015) [121] и Шоплик (2015) [158]. 

Например, Тонкович и др. (2009) [162], Таспинар и др. (2013) [161] и Кайнар и др. 

(2011) [125] тестировали многослойные перцептроны и радиально-базисные сети 

с различными функциями активации, выявив, что многослойный перцептрон 

показал наименьшую среднюю абсолютную процентную ошибку. Таспинар и др. 

(2013) [161] также сравнили нейронные сети с моделями временных рядов. 

Демирель и др. (2012) [108] использовали многослойный перцептрон и 

сопоставили результаты с двумя моделями временных рядов. Олгун и др. (2012) 
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[140] выявили, что машины опорных векторов дают меньшую статистическую 

ошибку, чем нейронные сети. 

Солдо и др. (2014) [154] изучали влияние солнечной радиации на 

потребление газа в жилом секторе, используя нейронные сети для анализа данных 

от модельного дома и местной газораспределительной компании. Изадьяр и др. 

(2015) [121] использовали метод экстремального обучения (ELM) для обучения 

прямого распространения нейронных сетей. Панапакидис и Дагумас (2017) [141] 

предложили гибридную модель, сочетающую вейвлет-преобразование, 

генетический алгоритм, ANFIS и прямую нейронную сеть для прогнозирования 

суточного потребления газа. Азаде и др. (2015) [91] разработали гибридную 

систему, объединяющую ANFIS и компьютерное моделирование, для 

прогнозирования потребления газа. Кайнар и др. (2011) [125] применили ANFIS 

для прогнозирования недельного потребления газа в Турции. 

Ма и Ли (2010) [130] использовали серую систему для прогнозирования 

потребления газа. Аналогичный подход применили Борана (2015) [96] с серой 

моделью прогнозирования с роллинг-механизмом (GPRM), Ву и др. (2015) [163] и 

Цзэн и Ли (2016) [166]. Каякан и др. (2010) [124] отметили, что «серые модели 

предсказывают будущие значения временного ряда на основе последних 

доступных данных, учитывая выбранное окно прогноза». 

К популярным методам прогнозирования также относятся машины 

опорных векторов (SVM) и метод опорных векторов для регрессии (SVR). Олгун 

и др. (2012) [140] сравнили нейронные сети и SVM, установив меньшую 

статистическую ошибку у SVM. Солдо и др. (2014) [154] использовали как 

линейные, так и нелинейные модели для прогнозов, выявив, что нелинейные 

нейронные сети и SVR демонстрируют немного большую ошибку по сравнению с 

линейными моделями. 

Жу и др. (2015) [168] предложили метод, который интегрирует SVR с 

восстановлением временного ряда и оптимизацией локального предиктора, 

устраняя ложных соседей. Бай и Ли (2016) [92] применили структурно-

калиброванный SVR. Арас (2008) [87] использовал генетические алгоритмы для 
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краткосрочного прогнозирования потребления газа в жилых домах. Форузанфар и 

др. (2010) [115] и Изадьяр и др. (2015) [121] использовали методы генетического 

программирования. 

Некоторые авторы применяли математические модели для 

прогнозирования потребления газа. Гиль и Деферрари (2004) [116] создали модель 

для прогнозов на 1–5 дней вперёд с неопределённостью 10%. Гутьеррес и др. 

(2005) [118] предложили стохастическую модель инновационного 

распространения Гомперца. Поточник и др. (2007) [144] разработали модель, 

используемую в нескольких газораспределительных сетях. 

Брабец и др. (2008) [99] предложили нелинейную модель со смешанными 

эффектами (NLME) и сравнили её с двумя классическими моделями временных 

рядов. Сабо и др. (2011) [149] использовали как линейные, так и нелинейные 

математические модели, включая экспоненциальную, логистическую и модель 

Гомперца. Форузанфар и др. (2010) [115] применили метод нелинейного 

программирования в комбинации с генетическим программированием. 

Солдо и др. (2014) [154] проанализировали несколько линейных моделей, 

таких как авторегрессионная модель с экзогенными переменными и поэтапную 

регрессию. Акпинар и Юмусак (2017) [85] использовали множественную 

линейную регрессию для прогнозирования потребления газа. 

Методы временных рядов также широко используются для 

прогнозирования. Кайнар (2011) [125] и Демирель (2012) [108] применяли 

авторегрессионную интегрированную скользящую среднюю модель (ARIMA). 

Таспинар (2013) [161] использовал сезонную ARIMA с экзогенными переменными 

(SARIMAX). Акпинар и Юмусак (2016) [84] исследовали методы декомпозиции 

временных рядов, экспоненциального сглаживания Холта-Уинтерса и ARIMA. 

Среди альтернативных подходов можно отметить работу Балдаччи и др. 

(2016) [93], которые использовали метод ближайших соседей и локальный 

регрессионный анализ для прогнозирования потребления природного газа. 

В отечественной литературе фундаментальной работой в области 

прогнозирования потребления газа с использованием методов машинного 
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обучения является статья С.Н. Панкратова и др. (2023) [51]. Авторы проводят 

всесторонний анализ методов краткосрочного, в частности почасового, 

прогнозирования газопотребления в рамках ЕСГ, используя широкий спектр 

алгоритмов машинного обучения – от линейной регрессии и метода опорных 

векторов до случайных лесов, градиентного бустинга и нейронных сетей. 

Основной результат исследования заключается в том, что нейронные сети 

показали наилучшие показатели точности при прогнозировании почасового 

объёма потребления газа, обеспечив минимальное значение средней абсолютной 

процентной ошибки среди всех рассмотренных моделей. Однако авторы также 

отмечают, что линейная регрессия, несмотря на простоту и меньшие 

вычислительные затраты, показывает достойные результаты и может быть 

рекомендована для практического применения в условиях ограниченных 

ресурсов. Дополнительно в работе исследуется влияние различных факторов, 

включая температурные колебания и внутрисуточную неравномерность 

потребления, что позволяет улучшить качество прогнозов. Авторы заслуживают 

высокой оценки за комплексный подход к задаче прогнозирования и тщательный 

анализ применимости различных методов машинного обучения в реальных 

условиях эксплуатации ГТС. 

1.2. Статистические методы прогнозирования расхода топливного газа 

1.2.1. Экономико-статистическое обоснование ключевых факторов, 

влияющих на расход топливного газа 

Расход топливного газа является важным экономическим показателем 

эффективности работы ГТС. С экономической точки зрения ключевыми 

факторами, определяющими величину расхода топливного газа, являются объемы 

прокачиваемого газа, протяженность газотранспортных магистралей, рабочее 

давление и температурные условия. 

Объем прокачиваемого газа напрямую определяет потребности в топливном 

газе для работы КС, которые обеспечивают движение газа по трубопроводам. 

Рост объема прокачки приводит к увеличению числа работающих компрессоров 
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или увеличению их загрузки, что, в свою очередь, повышает расход топливного 

газа [55, стр. 390]. 

Протяженность газопроводов существенно влияет на объем расходуемого 

топлива: с увеличением расстояния возрастает потребность в энергии, 

необходимой для преодоления гидравлического сопротивления газа в 

трубопроводах. Удлинение трассы газопровода приводит к росту количества 

операций по компримированию газа и, соответственно, к увеличению 

потребления топливного газа КС. Это обусловлено тем, что КС размещаются на 

определённых интервалах (порядка 100–150 км) с целью поддержания требуемого 

давления и стабильного объёма транспортируемого газа. [55, стр. 169].  

Рабочее давление в газопроводах напрямую связано с затратами на 

транспортировку. Повышение рабочего давления приводит к снижению расхода 

газа на компримирование [74], однако требует поддержания и контроля более 

высоких требований к техническому состоянию оборудования, что влияет на 

экономические затраты. 

Температурные условия оказывают значительное влияние на 

термодинамические параметры транспортируемого газа, изменяя его плотность и 

вязкость. Более низкие температуры приводят к увеличению вязкости газа и, 

соответственно, повышению расхода энергии на его транспортировку [55, стр. 

394]. Увеличение производительности участка магистрального газопровода при 

изменении его средней температуры можно оценить соотношением (формула 2): 

𝑄1

𝑄2
= √

𝑇ср.2

𝑇ср.1
 (2) 

где 𝑄1 – пропускная способность участка МГ при средней температуре (𝑇ср.1); 𝑄2 

– пропускная способность участка МГ при средней температуре (𝑇ср.2).  

Экономико-статистический анализ позволяет обосновать выбор ключевых 

факторов, которые должны учитываться при моделировании и прогнозировании 

расхода топливного газа в ГТС. 
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1.2.2. Построение прогнозных моделей: регрессионные, ML и гибридные 

подходы 

Для прогнозирования расхода топливного газа в ГТС возможно применение 

различных подходов: регрессионный анализ, методы машинного обучения (ML) 

[37] и гибридные модели, объединяющие преимущества первых двух подходов. 

Регрессионный анализ является одним из наиболее распространенных 

подходов. В его основе лежит построение математической зависимости между 

прогнозируемым показателем (расходом топливного газа) и набором ключевых 

факторов (объемом прокачиваемого газа, давлением, температурой и т.д.). Для 

оценки качества таких моделей традиционно применяется метод наименьших 

квадратов. Основными достоинствами регрессионного подхода являются его 

простота, интерпретируемость и прозрачность математической связи между 

переменными. 

Машинное обучение предоставляет возможность построения более 

сложных и точных моделей прогнозирования. Для решения задачи 

прогнозирования расхода топливного газа широко используются методы 

машинного обучения, такие как искусственные нейронные сети (в частности, 

архитектуры с долгой краткосрочной памятью – LSTM), деревья решений, 

случайные леса, алгоритмы градиентного бустинга и глубокие нейронные сети 

[37]. Эти методы позволяют учитывать сложные нелинейные взаимосвязи и 

выявлять скрытые зависимости в данных, однако их применение связано с 

необходимостью наличия обширных исторических выборок и значительных 

вычислительных мощностей. 

Гибридные подходы объединяют достоинства регрессионных моделей и 

методов ML. Например, регрессионная модель может использоваться для 

предварительного отбора и анализа факторов, а далее построенные нейронные 

сети или модели ансамблей могут уточнять прогнозы, адаптируясь к более 

сложным закономерностям. Такие модели характеризуются высоким качеством 

прогнозов и достаточной интерпретируемостью, что особенно важно при 

принятии экономически значимых решений. 
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Проведённые эксперименты подтвердили высокую точность и надёжность 

сверточных нейронных сетей (CNN) при прогнозировании расхода топливного 

газа. Результаты показывают, что использование таких моделей позволяет 

эффективно учитывать сложные нелинейные зависимости во входных данных и 

обеспечивает перспективный инструмент для повышения точности оперативного 

планирования в ГТС. 

Выбор подхода к построению прогнозных моделей зависит от целей 

исследования, доступности данных и необходимости обеспечить оптимальный 

баланс между точностью, сложностью и интерпретируемостью полученных 

прогнозов. 

1.2.3. Методология оценки качества и экономическая интерпретация 

прогнозов, возможности применения моделей в диспетчерской практике 

Ключевым этапом при создании и внедрении моделей прогнозирования 

расхода топливного газа является оценка их точности и устойчивости. Для этого 

применяется совокупность статистических метрик и критериев, позволяющих 

количественно охарактеризовать качество и адекватность полученных прогнозов. 

Наиболее распространёнными среди них являются средняя абсолютная ошибка 

(MAE), среднеквадратичная ошибка (RMSE) и средняя абсолютная процентная 

ошибка (MAPE). Метрика MAE отражает среднюю величину отклонения 

прогнозных значений от фактических, RMSE позволяет выявлять 

чувствительность модели к крупным ошибкам, а MAPE оценивает относительную 

точность прогнозов, выраженную в процентах, что упрощает интерпретацию 

результатов. Выбор конкретных метрик зависит от целей прогнозирования и 

особенностей задач, решаемых в диспетчерской практике. 

Для оценки точности прогнозных моделей в исследовании использовалась 

процедура 5-кратной кросс-валидации (5-fold cross-validation) [56]. Этот метод 

предусматривает разбиение всего набора данных на пять равных частей: на 

каждом этапе четыре из них используются для обучения модели, а оставшаяся – 

для её тестирования. Процесс повторяется пять раз, и итоговая оценка качества 

модели определяется как среднее значение метрик по всем итерациям. Такой 
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подход позволяет минимизировать переобучение и повысить обобщающую 

способность модели. 

Одной из ключевых метрик точности является коэффициент детерминации 

(𝑅2), отражающий долю объяснённой моделью вариации выходной переменной.  

Для интерпретации вкладов признаков в формирование прогноза 

применялся SHAP-анализ (SHapley Additive exPlanations). Этот метод, основанный 

на теории кооперативных игр, позволяет определить количественный вклад 

каждого признака в итоговое значение прогноза. SHAP обеспечивает 

интерпретируемость даже для сложных моделей, включая сверточные нейронные 

сети, и позволяет выявить наиболее значимые факторы, влияющие на расход 

топливного газа. 

Помимо технической стороны оценки точности прогнозных моделей, особое 

значение имеет их экономическая интерпретация. Точность прогнозирования 

расхода топливного газа непосредственно влияет на экономическую 

эффективность работы КС. Достоверные прогнозы позволяют рационально 

распределять нагрузку между агрегатами и подбирать режимы их 

функционирования, обеспечивающие минимальный расход топлива при заданных 

параметрах транспортировки. Недостаточная точность расчётов, напротив, ведёт к 

неэффективному использованию оборудования, избыточному потреблению газа, 

снижению общего КПД и увеличению эксплуатационных расходов. Прогнозные 

модели позволяют минимизировать технические потери, избежать холостого хода 

агрегатов и перегрузки отдельных станций, что снижает потери на 

компримирование и риск нештатных режимов работы. Кроме того, точное 

прогнозирование способствует сокращению частоты включений и отключений 

компрессоров, снижает износ оборудования, продлевает срок его службы и 

уменьшает затраты на техническое обслуживание, повышая общую надежность и 

экономическую эффективность работы ГТС. 

Внедрение разработанных прогнозных моделей в диспетчерскую практику 

газотранспортного предприятия также предъявляет особые требования к 

интерпретируемости полученных результатов. Модели должны обеспечивать не 



33 
 

только высокую точность, но и простоту интерпретации и объяснения полученных 

результатов диспетчерскому персоналу. Регрессионные модели и гибридные 

подходы в этом плане имеют явные преимущества, поскольку позволяют наглядно 

оценить влияние каждого фактора на прогнозируемый показатель, а значит, и 

более аргументированно подходить к принятию решений в оперативном 

управлении ГТС. 

Важной составляющей применения прогнозных моделей является их 

интеграция с информационными и диспетчерскими системами, используемыми на 

предприятиях газовой промышленности. Для полноценного применения в 

оперативном режиме разработанные модели должны быть интегрированы в 

существующие системы мониторинга и поддержки принятия решений. Это 

позволяет оперативно обновлять прогнозы на основе текущих данных, выявлять 

отклонения от заданных диапазонов и своевременно принимать меры по 

оптимизации работы оборудования и расходования ресурсов. 

Методология оценки качества, экономическая интерпретация и возможности 

применения моделей в диспетчерской практике формируют единую основу для 

повышения экономической эффективности управления ГТС, позволяя 

максимально эффективно использовать имеющиеся ресурсы и минимизировать 

операционные расходы на топливный газ. 

1.3. Математические методы оптимизации и моделирования процессов 

транспортировки природного газа 

Математическое моделирование является важным инструментом для 

анализа и оптимизации процессов транспортировки природного газа. Оно 

позволяет описывать сложные физические и экономические процессы, 

протекающие в ГТС, разрабатывать эффективные алгоритмы управления 

потоками газа и находить оптимальные режимы их работы. Использование 

математических моделей помогает принимать обоснованные управленческие 

решения, направленные на повышение эффективности эксплуатации 

инфраструктуры и минимизацию затрат. 
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Первые шаги в области математического моделирования трубопроводных 

сетей были сделаны в 1930-х годах, когда исследователи начали изучать 

гидродинамику потоков воды в системах водоснабжения. Постепенно данные 

исследования оформились в самостоятельное научное направление – теорию 

гидравлических цепей, ориентированную на моделирование, анализ и расчёт 

сложных трубопроводных систем. Ключевым трудом, определившим развитие 

этого направления, стала монография А.П. Меренкова и В.А. Хасилева «Теория 

гидравлических цепей» [45], которая заложила основу для последующих научных 

разработок в данной области. 

Развитие этой теории активно продолжалось в ряде научных школ, 

включая московскую (М.Г. Сухарев, Е.Р. Ставровский) [71, 72], иркутскую (А.П. 

Меренков, Н.Н. Новицкий) [21, 44, 47, 48, 62, 63], харьковскую (А.Г. Евдокимов, 

А.Д. Тевяшев) [24, 25] и воронежскую (И.С. Квасов, М.Я. Панов) [52, 53, 80]. 

Принципы теории гидравлических цепей нашли широкое практическое 

применение в проектировании и эксплуатации систем транспортировки 

углеводородов, водоснабжения, теплоснабжения, а также в технологических 

трубопроводах предприятий химической промышленности [30, 31]. Более того, с 

развитием вычислительной техники и программных комплексов, методы 

моделирования стали неотъемлемой частью инженерного анализа и оптимизации 

трубопроводных систем различного назначения. 

Разработка и эксплуатация трубопроводных сетей представляет собой 

сложный процесс, связанный с необходимостью решения множества 

оптимизационных задач. В первую очередь, на этапе проектирования 

магистральных газопроводов требуется тщательно проанализировать различные 

маршруты прокладки трубопроводов с целью выбора наиболее эффективного и 

экономически обоснованного варианта. Этот выбор должен учитывать 

минимизацию капитальных вложений в строительство, а также снижение 

эксплуатационных расходов в будущем. Важным аспектом является определение 

оптимальных значений параметров системы, таких как рабочее давление и 
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диаметр трубопроводов, которые напрямую влияют на производительность и 

эффективность сети. 

Кроме того, значительную роль играет грамотный выбор силового 

оборудования – газоперекачивающих агрегатов (ГПА). Подбор оборудования 

должен учитывать не только технические характеристики, включая мощность, 

энергоэффективность и надёжность, но и экономическую целесообразность 

эксплуатации на протяжении всего срока службы. Также следует учитывать 

возможность модернизации и гибкости системы для дальнейшего 

масштабирования или изменения условий эксплуатации. 

В современных условиях проектирование трубопроводных систем 

становится всё более сложным и требует интеграции методов математического 

моделирования, анализа данных и применения специализированных программных 

решений для оптимизации всех этапов жизненного цикла трубопроводов – от 

планирования маршрута до выбора оборудования и оценки затрат. 

Процесс эксплуатации газопроводных сетей тесно связан с 

необходимостью эффективного распределения потоков газа между различными 

участками системы. Газотранспортные сети, будь то магистральные или 

распределительные, как правило, обладают сложной и избыточной 

инфраструктурой, что предоставляет операторам возможность выбора наиболее 

рациональных маршрутов для транспортировки газа. В таких системах часто 

присутствует несколько параллельных ниток трубопроводов, которые могут 

функционировать в разных режимах в зависимости от текущих эксплуатационных 

потребностей. 

В ситуациях, когда система работает не на полную мощность, отдельные 

нитки могут быть переведены в режим пассивной транспортировки, при котором 

не требуется работа КС, что позволяет значительно сократить затраты на 

энергоресурсы. Более того, наличие замкнутых участков (петель, колец) в 

трубопроводной сети создает дополнительные возможности для маневрирования 

потоками газа, позволяя направлять его по альтернативным маршрутам для 

достижения максимальной эффективности транспортировки. 
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Эффективное управление потоками газа требует комплексного анализа 

текущего состояния системы и применения методов оптимизации для выбора 

наилучших схем распределения потоков. Важную роль в этом процессе играют 

современные информационные системы и алгоритмы, которые позволяют 

учитывать множество факторов, таких как давление, температура, 

производительность КС и экономические показатели. Применение таких 

подходов способствует повышению надежности газоснабжения, снижению 

эксплуатационных расходов и улучшению общей эффективности 

функционирования ГТС. 

Вклад в эволюцию методов оптимизации транспортировки газа был 

значительно расширен благодаря исследованиям М.Г. Сухарева и Е.Р. 

Ставровского. Их фундаментальная монография «Расчёты систем транспорта газа 

с помощью вычислительных машин» (1971) [71] стала ключевым трудом в 

области анализа и управления трубопроводными сетями. В этой работе авторы 

предложили метод целенаправленного перебора вариантов, основанный на 

принципах динамического программирования. Этот метод стал эффективным 

инструментом для решения сложных задач с дискретными параметрами, такими 

как определение оптимального количества задействованных ГПА, выбор 

оптимальной конфигурации трубопроводной сети и планирование работы КС. 

Одним из ключевых преимуществ метода является его способность 

находить глобальные экстремумы целевых функций без необходимости в 

начальном приближении, что значительно повышает точность и надёжность 

результатов. Благодаря этому подходу стало возможным учитывать широкий 

спектр технологических и эксплуатационных ограничений при планировании 

режимов работы ГТС, что, в свою очередь, способствовало повышению их общей 

эффективности и экономической целесообразности. 

В дальнейшем предложенные методы стали основой для более сложных 

алгоритмов оптимизации, способных учитывать дополнительные переменные и 

работать с крупномасштабными сетями с высокой степенью сложности [66, 67, 

68, 69, 70]. Эти разработки сыграли важную роль в становлении современных 
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подходов к управлению потоками природного газа и оптимизации работы 

магистральных газопроводов. 

В современных исследованиях для определения оптимальных режимов 

транспортировки газа применяются как стационарные, так и нестационарные 

модели. Стационарные модели предполагают постоянство характеристик системы 

во времени, что позволяет упростить расчёты и сосредоточиться на долгосрочной 

оптимизации транспортных процессов. Они широко используются для 

планирования режимов работы магистральных газопроводов в условиях 

стабильного спроса и предсказуемых потоков газа. 

Однако в реальных условиях эксплуатации газотранспортных сетей часто 

возникают переходные процессы, связанные с колебаниями спроса, аварийными 

ситуациями или изменением показателей на определённых участках системы. В 

таких случаях более точные результаты дают нестационарные модели, которые 

учитывают динамику изменения значений параметров потока газа во времени [57, 

69]. Эти модели позволяют прогнозировать поведение системы в условиях 

неустойчивых режимов и принимать более обоснованные решения для 

обеспечения надёжной и эффективной работы газопроводной сети. 

Для оптимизации переходных процессов применяются сложные 

алгоритмы расчёта, основанные на принципах динамического программирования. 

Эти методы позволяют находить оптимальные траектории изменения режимов 

работы системы с учётом заданных ограничений и критериев эффективности. 

Исследования показывают, что использование нестационарных моделей в 

сочетании с методами динамического программирования значительно повышает 

точность прогнозов и способствует улучшению управляемости ГТС, как указано в 

ряде современных работ в данной области. 

Существенным вызовом при моделировании и оптимизации работы ГТС 

является проблема неопределенности исходных данных. Это связано с рядом 

факторов, среди которых наибольшее значение имеют неточные прогнозы 

объемов добычи и потребления природного газа, а также изменения в 

техническом состоянии инфраструктуры. Например, значительная часть 
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магистральных газопроводов в ЕСГ России эксплуатируется более трёх 

десятилетий, что приводит к естественному износу материалов и снижению 

эксплуатационных характеристик трубопроводов. 

В процессе длительной эксплуатации на внутренних стенках 

трубопроводов образуются отложения конденсата, гидратов и прочих 

загрязнений, что увеличивает гидравлическое сопротивление и негативно влияет 

на пропускную способность системы. Кроме того, ухудшение прочностных 

характеристик труб из-за коррозии и механического износа приводит к снижению 

максимально допустимого давления, что также ограничивает возможности 

эксплуатации. 

КС подвержены аналогичным проблемам. Газоперекачивающие агрегаты 

со временем теряют свою первоначальную производительность из-за износа 

ключевых компонентов, что в свою очередь приводит к росту энергозатрат и 

снижению общей эффективности системы. Ухудшение технических 

характеристик оборудования напрямую влияет на стабильность и надежность 

транспортировки газа, делая задачу точного прогнозирования и оптимизации ещё 

более сложной. 

Для решения проблемы неопределённости исходных данных в 

моделировании и оптимизации ГТС применяются различные математические 

методы, включая вероятностное моделирование и теорию нечётких множеств 

[164]. Вероятностные модели позволяют учитывать случайный характер ряда 

показателей, таких как объёмы добычи и потребления газа, а также изменчивость 

внешних условий, влияющих на эксплуатацию трубопроводов. Эти модели 

опираются на статистические данные и используют методы анализа 

вероятностных распределений для оценки рисков и прогнозирования поведения 

системы в различных сценариях. 

Теория нечётких множеств, в свою очередь, предоставляет инструменты 

для работы с неточными или неполными данными, позволяя строить модели, 

которые могут учитывать неопределённость и расплывчатость исходной 

информации. Применение нечётких логических правил и методов нечёткой 
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кластеризации позволяет более гибко описывать сложные зависимости между 

значениями параметров системы и учитывать экспертные оценки там, где точные 

измерения невозможны. 

Сочетание вероятностного подхода и методов нечёткой логики даёт 

возможность создавать более адаптивные и надёжные модели, способные 

учитывать широкий спектр неопределённостей. Это, в свою очередь, позволяет 

повысить точность прогнозирования эксплуатационных показателей ГТС, 

оптимизировать режимы их работы и улучшить качество принимаемых 

управленческих решений, что особенно важно в условиях нестабильности и 

изменчивости рынка энергоресурсов. 

На современном этапе развития технологий для оптимизации процессов 

транспортировки природного газа активно применяются методы машинного 

обучения и эволюционные алгоритмы. Эти подходы позволяют решать сложные 

многокритериальные задачи, включая выбор оптимальных маршрутов 

транспортировки, прогнозирование значений параметров потоков и 

распределение ресурсов с учётом технологических и экономических ограничений. 

Машинное обучение, в частности, позволяет анализировать большие объёмы 

данных о работе ГТС, выявлять скрытые закономерности и строить прогнозные 

модели, способные учитывать изменчивость эксплуатационных условий. 

Эволюционные алгоритмы, такие как генетические алгоритмы и методы 

роя частиц, демонстрируют высокую эффективность при поиске оптимальных 

решений в задачах с большим числом переменных и сложной целевой функцией. 

Эти методы позволяют находить глобальные экстремумы в сложных 

конфигурациях газотранспортных сетей, оптимизируя затраты энергии, 

минимизируя потери давления и повышая общую эффективность системы. 

Интеграция методов машинного обучения и эволюционных алгоритмов в 

интеллектуальные СППР создаёт новые перспективы для автоматизации 

процессов управления газотранспортными сетями. Подобные системы способны в 

реальном времени анализировать данные о состоянии инфраструктуры, 

формировать оптимальные сценарии функционирования и предоставлять 
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диспетчерам рекомендации для принятия рациональных решений. Это 

обеспечивает повышение эффективности транспортировки природного газа, 

снижение эксплуатационных издержек, рост надёжности работы системы и 

уменьшение негативного воздействия на окружающую среду. 

Дальнейшее развитие методов математического моделирования и 

оптимизации является важным шагом для обеспечения надёжной, эффективной и 

устойчивой работы газотранспортных сетей, что играет ключевую роль в 

поддержании энергетической безопасности и стабильности поставок природного 

газа на глобальном уровне. 

К сожалению, в указанных работах не были в достаточной степени 

раскрыты вопросы, связанные с учетом экономических критериев при выборе 

режимов работы газотранспортной системы, а также интеграции технических 

моделей с инструментами поддержки управленческих решений. Кроме того, 

ограниченное внимание уделяется проблемам неопределенности исходных 

данных, что снижает адаптивность и практическую применимость предложенных 

решений в реальных условиях эксплуатации. 

1.3.1. Формализация задачи оптимизации с экономическими и техническими 

ограничениями 

Эффективность работы ГТС определяется не только технологическими 

аспектами, но и в значительной степени экономическими критериями, в частности 

минимизацией эксплуатационных затрат на транспортировку природного газа. 

Поэтому задачей оптимизации режимов работы ГТС является выбор таких 

условий функционирования оборудования (прежде всего КС), при которых 

достигается минимальный уровень затрат при соблюдении всех технологических 

и эксплуатационных ограничений. 

Формально многокритериальная задача оптимизации может быть описана 

следующим образом (формула 3): 

𝐹(𝑋) = [𝑓1(𝑋), 𝑓2(𝑋), … , 𝑓𝑚(𝑋)] → 𝑚𝑖𝑛 (3) 

где 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑛) – вектор управляемых переменных системы (давления, 

расходы газа, количество работающих ГПА и др.); 𝑓𝑖(𝑋) – i-я целевая функция, 
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отражающая конкретный критерий оптимизации;  𝑚  – количество критериев 

оптимальности [76]. 

Следующие критерии оптимизации носят стоимостной характер и могут 

быть использованы в многокритериальной оптимизационной задаче: 

Критерий 1: минимизация стоимостного расхода топливного газа, формула 

4: 

𝑓1(𝑋) = ∑ 𝑄𝑖
тг

𝑖∈ℬ

⋅ 𝐶𝑖 → 𝑚𝑖𝑛 (4) 

где ℬ – множество балансовых зон; 𝑄𝑖
тг– расход топливного газа в  𝑖 −й 

балансовой зоне; 𝐶𝑖 – цена топлива в  𝑖 −й балансовой зоне, установленная 

Приказом ФАС России;  𝑋  – вектор управляемых переменных, влияющих на 

распределение газа и режим работы ГТС. 

Критерий 2: минимизация штрафных санкций за отклонения от 

контрактных показателей качества газа, формула 5: 

𝑓2(𝑋) = ∑ 𝑆𝑗

𝑗∈𝒞

⋅ δ𝑗(𝑋) → 𝑚𝑖𝑛 (5) 

где 𝒞– множество контрактных контрольных показателей (например, содержание 

азота, этана, теплотворная способность и др.); δ𝑗(𝑋) – величина отклонения 

фактического значения показателя  𝑗  от контрактного допустимого диапазона 

(если есть превышение); 𝑆𝑗 – весовой коэффициент (штрафная ставка) за 

нарушение показателя 𝑗;  𝑋  – вектор управляемых переменных, влияющих на 

компонентный состав газа в экспортной точке.  

Критерий минимизации штрафных санкций отражает возможные 

экономические потери из-за несоблюдения поставщиком контрактных требований 

к компонентному составу природного газа. При этом формула допускает как 

линейную модель штрафов, так и более сложные штрафные функции (например, 

пороговые, ступенчатые). Более подробно о критерии изложено в [40, 42]. 

Критерий 3: максимизация выручки за счёт перераспределения газа с 

высоким содержанием этана на промышленные предприятия (формула 6).  



42 
 

𝑓3(𝑋) = [ ∑ 𝑄𝑖

𝑖∈ℐпром

⋅ 𝑃𝑖 ⋅ (
𝐻𝑖

𝐻норм

)] + [ ∑ 𝑄𝑗

𝑗∈ℐбыт

⋅ 𝑃фикс] → 𝑚𝑎𝑥 (6) 

где ℐпром – множество промышленных потребителей;  ℐбыт – множество 

коммунально-бытовых потребителей; 𝑄𝑖 , 𝑄𝑗 – объёмы поставленного газа 

промышленным и бытовым потребителям соответственно; 𝑃𝑖 – оптовая цена газа 

для промышленного потребителя (руб/1000 м³); 𝑃фикс – фиксированная цена для 

населения/КБО; 𝐻𝑖 – фактическая теплота сгорания у промышленного 

потребителя  𝑖 ; 𝐻норм – нормативная теплота сгорания (ккал. / куб. м (кДж/куб. 

м));  𝑋 – вектор управляемых переменных, влияющих на распределение потоков 

газа. 

Согласно [12, п.3], оптовые цены на газ на внутреннем рынке 

устанавливаются на выходе из системы магистрального газопроводного 

транспорта на объемную единицу измерения (1000 куб. м) с расчетной объемной 

теплотой сгорания 7900 ккал/куб. м (33080 кДж/куб. м). Это нормативное 

значение играет ключевую роль в формировании ценовой политики, так как 

отклонения фактической теплоты сгорания от установленного показателя могут 

влиять на доходы как поставщиков, так и потребителей природного газа. Таким 

образом, перераспределение газа с высоким содержанием этана на 

промышленных потребителей в соответствии с формулой цены, указанной в [12] 

приведет к увеличению выручки у поставщика газа. 

Единая целевая функция оптимизации в таком случае будет выглядеть 

следующим образом (формула 7) : 

𝐹(𝑋) = 𝑓1(𝑋) + 𝑓2(𝑋) − 𝑓3(𝑋) → 𝑚𝑖𝑛 (7) 

где 𝑓1(𝑋)– суммарные затраты на топливный газ по балансовым зонам; 𝑓2(𝑋) – 

потенциальные штрафные санкции за отклонение компонентного состава от 

контрактных требований; 𝑓3(𝑋) – совокупная выручка от реализации газа 

промышленным и коммунально-бытовым потребителям. 
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Поскольку первые два критерия – это затраты и штрафы, а третий – доход, 

вся функция оптимизации направлена на минимизацию приведённых затрат. 

Поэтому 𝑓3(𝑋) входит со знаком минус, его требуется максимизировать. 

После формализации критериев оптимизации определены ограничения  

Задача оптимизации (формулы 8 - 11): 

1. Уравнения баланса потоков газа в узлах (условия Кирхгофа): 

∑ 𝑄𝑖𝑗

𝑗:(𝑖,𝑗)∈𝐸

− ∑ 𝑄𝑗𝑖

𝑗:(𝑗,𝑖)∈𝐸

= 𝑄𝑖
𝑒𝑥𝑡 ,  ∀𝑖 ∈ 𝑉 (8) 

где 𝑄𝑖
𝑒𝑥𝑡 – внешнее поступление (либо отбор) газа в узле 𝑖. 

2. Ограничения по расходу газа на каждом элементе: 

𝑄𝑚𝑖𝑛
𝑖𝑗

≤ 𝑄𝑖𝑗 ≤ 𝑄𝑚𝑎𝑥
𝑖𝑗

,  ∀(𝑖, 𝑗) ∈ 𝐸 (9) 

3. Ограничения на давления на входах и выходах элементов: 

𝑃𝑚𝑖𝑛
𝑖 ≤ 𝑃𝑖

𝑖𝑛, 𝑃𝑖
𝑜𝑢𝑡 ≤ 𝑃𝑚𝑎𝑥

𝑖 ,  ∀𝑖 ∈ 𝑉 (10) 

4. Ограничения пропускной способности газопровода или элемента ГТС: 

0 ≤ 𝑃𝑆𝑘 ≤ 𝑇𝑉𝑃𝑆𝑚𝑎𝑥
𝑘 ,  𝑘 = 1, … , 𝑚 (11) 

где 𝑚 – количество газопроводов или газопроводных систем в ГТС; 𝑃𝑆𝑘.- 

пропускная способность 𝑘 элемента ГТС. 

Задача оптимизации представляет собой многокритериальную задачу 

математического программирования, где необходимо определить оптимальные 

режимы работы газотранспортной сети, учитывая одновременно технические и 

экономические ограничения.   

Наиболее эффективными в таких задачах, учитывая нелинейность и 

сложность зависимостей между переменными, оказываются современные методы 

численной оптимизации: методы динамического программирования, алгоритмы 

последовательной квадратичной оптимизации, методы градиентного спуска и, в 

особенности, эволюционные алгоритмы, позволяющие эффективно искать 

глобальные решения в условиях наличия большого числа локальных экстремумов. 

Реализация предложенной постановки задачи оптимизации позволяет 

обеспечить экономически обоснованное управление потоками природного газа, 
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минимизировать затраты на его транспортировку и повысить общую 

эффективность функционирования ГТС. 

1.3.2. Методы многокритериальной оптимизации и их адаптация к 

энергетическим системам 

При решении задач оптимизации режимов работы ГТС зачастую возникает 

необходимость одновременного учета нескольких противоречивых критериев 

эффективности. В такой ситуации традиционные методы однокритериальной 

оптимизации оказываются недостаточными, и возникает потребность в 

применении подходов многокритериальной оптимизации. 

Важнейшей особенностью многокритериальной оптимизации является 

необходимость нахождения компромиссного (парето-оптимального) решения. 

Парето-оптимальное решение характеризуется тем, что улучшение любого одного 

критерия возможно только за счет ухудшения других критериев. Математически 

это записывается следующим образом (формула 12): 

∄𝑋′: 𝑓𝑖(𝑋′) ≤ 𝑓𝑖(𝑋) ∀𝑖 и ∃𝑗: 𝑓𝑗(𝑋′) < 𝑓𝑗(𝑋) (12) 

где 𝑋′– решение, доминирующее над 𝑋, то есть по всем критериям не хуже и хотя 

бы по одному – лучше. 

Таким образом, задача многокритериальной оптимизации сводится к 

построению и анализу множества Парето-оптимальных решений, выбору из них 

наилучшего решения с точки зрения поставленных задач управления ГТС. 

Для решения многокритериальных задач в управлении энергетическими и 

ГТС используются следующие подходы: 

1. Методы свертки критериев: 

Классический подход, при котором несколько критериев оптимизации 

объединяются в единую целевую функцию с использованием весовых 

коэффициентов (формула 13): 

𝐹(𝑋) = ∑ λ𝑖𝑓𝑖(𝑋)

𝑚

𝑖=1

,  ∑ λ𝑖

𝑚

𝑖=1

= 1 (13) 

где 𝐹(𝑋) – агрегированная (свернутая) целевая функция, представляющая собой 

взвешенную сумму отдельных критериев оптимизации; 𝑓𝑖(𝑋) – i-я частная целевая 
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функция (отражающая отдельный критерий оптимизации, например затраты, 

выбросы, техническую надёжность и т.п.); λ𝑖 – весовой коэффициент i-го 

критерия, отражающий его относительную значимость в общей оценке; 𝑚  – 

общее число критериев оптимизации; 𝑋  – вектор управляемых переменных, 

определяющих состояние системы или параметры управления. 

Данный подход прост в реализации и интерпретации, однако выбор весов 

субъективен и влияет на конечный результат оптимизации. 

2. Методы целевого программирования: 

В этом подходе заранее задаются целевые значения критериев, которые 

желательно достигнуть. Решение определяется путем минимизации отклонений от 

этих целевых значений (формула 14): 

min ∑|𝑓𝑖(𝑋) − 𝑓𝑖
∗|

𝑚

𝑖=1

 (14) 

где 𝑓𝑖
∗ – целевые значения критериев, заданные с учетом технических и 

экономических условий эксплуатации. 

3. Эволюционные методы и генетические алгоритмы: 

Данные методы адаптивно ищут Парето-оптимальные решения, постепенно 

улучшая множество решений в процессе моделирования эволюционного развития. 

Они особенно эффективны при наличии сложных нелинейных связей и большого 

числа переменных. Эволюционные алгоритмы позволяют одновременно 

исследовать множество решений и получать множество компромиссных 

вариантов, среди которых затем принимается оптимальное управленческое 

решение. 

В ГТС, как отмечалось выше наиболее востребованными, являются именно 

эволюционные методы, поскольку они обеспечивают гибкость, адаптивность и 

позволяют находить компромиссные решения в условиях неопределенности и 

нелинейности реальных технологических и экономических процессов. При этом 

каждое Парето-оптимальное решение может быть подробно проанализировано, 

исходя из конкретных условий и ограничений функционирования ГТС, и принято 

в качестве основы для оперативного или стратегического управления. 
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Многокритериальный подход к оптимизации является эффективным 

инструментом повышения экономической эффективности ГТС, так как позволяет 

учесть одновременно несколько ключевых показателей, связанных как с 

техническими условиями эксплуатации, так и с экономической 

целесообразностью принимаемых решений. В рамках данного исследования 

акцент сделан на критерии минимизации стоимостного расхода топливного газа 

как наиболее значимом с точки зрения экономической эффективности и 

обоснованности выбора режимов. При этом структура целевой функции 

эволюционного алгоритма допускает реализацию и других критериев, в том числе 

минимизации штрафов за отклонения от контрактных показателей газа (Критерий 

2) и учёта отклонений показателей калорийности (Критерий 3). Однако для 

применения этих критериев в диссертационном исследовании требуется ценовая и 

контрактная информация, содержащаяся в коммерческих документах с грифом 

«Коммерческая тайна». В связи с этим в диссертации не представлен учет в 

целевой функции этих компонентов, что не исключает их использования в рамках 

промышленной реализации подхода. 

1.3.3. Эволюционные алгоритмы и теория графов в задачах оптимизации 

Эволюционные алгоритмы – это класс методов оптимизации, 

вдохновлённых биологическими процессами естественного отбора и эволюции. К 

числу наиболее известных относятся генетические алгоритмы, дифференциальная 

эволюция, алгоритмы роевого интеллекта и алгоритмы на основе искусственного 

иммунитета. Общей особенностью таких методов является то, что они не требуют 

аналитического задания целевой функции и её производных, а также позволяют 

находить глобальные решения даже в случае значительного числа локальных 

экстремумов.  

Генетические алгоритмы, как представители эволюционных методов, 

основываются на следующих основных этапах: 

- формирование начальной популяции (множества решений); 

- оценка пригодности решений по заданным критериям (целевым 

функциям); 
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- селекция лучших решений для формирования следующего поколения; 

- применение операторов кроссовера (скрещивания) и мутации для 

генерации новых решений; 

- повторение этих этапов до достижения заданных условий остановки 

алгоритма (стабильность решений, ограничение по числу итераций и т.д.). 

В контексте управления потоками газа популяция решений может 

представлять собой множество вариантов распределения потоков газа, значений 

давления на входах и выходах КС и их мощностей. Оценка пригодности решений 

выполняется с использованием целевых функций, отражающих экономические 

(затраты на транспортировку, стоимость топливного газа) и технические 

(давление, мощность компрессоров, надежность поставок) параметры. Благодаря 

высокой степени адаптивности генетические алгоритмы эффективно применяются 

в задачах многокритериальной оптимизации ГТС. 

Теория графов играет важную роль в структурном представлении ГТС [35]. 

ГТС представляется в виде графа 𝐺 = (𝑉, 𝐸), в котором вершины 𝑉 обозначают 

узлы (КС, газораспределительные пункты и точки подключения потребителей), а 

ребра 𝐸 – газопроводы и технологические участки, соединяющие эти узлы. 

Используя такое представление, возможно эффективно описывать и решать 

задачи, связанные с распределением потоков, определением оптимальных 

маршрутов транспортировки газа и выявлением критических элементов системы. 

Особую важность приобретает применение алгоритмов на графах, таких 

как: 

- алгоритмы поиска кратчайших путей (алгоритм Дейкстры, алгоритм 

Беллмана-Форда); 

- алгоритмы определения максимальных потоков в сети (алгоритм Форда-

Фалкерсона); 

- методы поиска остовных деревьев (алгоритм Прима, алгоритм Крускала); 

- методы обхода в глубину (Depth-First Search, DFS) и в ширину (Breadth 

First Search, BFS) для поиска точек начала и завершения маршрутов 

транспортировки природного газа, а также идентификация всех возможных 
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маршрутов от точек поступления газа в ГТС до точек потребления (реализации на 

экспорт). 

Интеграция эволюционных алгоритмов и теории графов осуществляется 

следующим образом: с помощью графового подхода определяется структура 

задачи (узлы, связи, ограничения), а эволюционные алгоритмы применяются для 

поиска оптимальных значений расхода топливного газа в балансовой зоне при 

заданных структурных ограничениях. 

Кроме того, с помощью теории графов можно проводить декомпозицию 

сложных систем на отдельные подсистемы, что упрощает процедуру 

оптимизации. Полученные таким образом подсистемы могут быть затем 

оптимизированы независимо друг от друга при помощи эволюционных 

алгоритмов, после чего найденные решения интегрируются в единую модель 

функционирования ГТС. 

Совместное использование эволюционных алгоритмов и методов теории 

графов обеспечивает эффективный и гибкий подход к решению сложных задач 

оптимизации ГТС, позволяет достигать экономически оправданного управления 

потоками газа, минимизировать операционные затраты и повышать надежность и 

устойчивость системы в целом. 

1.3.4. Интеллектуальные методы анализа и оптимизации 

Современные тенденции в управлении газотранспортными потоками 

требуют внедрения интеллектуальных методов анализа и оптимизации, 

способных адаптироваться к изменяющимся условиям эксплуатации, учитывать 

сложные зависимости между параметрами системы и обрабатывать большие 

объемы данных. Интеллектуальные методы, включающие машинное обучение, 

эволюционные алгоритмы и гибридные подходы, открывают новые возможности 

для повышения эффективности газотранспортных процессов. 

Проблематика оптимизации режимов функционирования ГТС впервые 

получила детальное рассмотрение в исследовании [71], где была представлена 

концепция применения метода динамического программирования для 

моделирования оптимальных режимов работы. Этот подход получил широкое 
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признание и стал теоретической основой для последующих научных 

исследований, направленных на его развитие и совершенствование [35, 58, 60]. 

За последние десятилетия накоплен значительный объём работ, 

посвящённых вопросам оптимизации режимов функционирования ГТС. В 

частности, были разработаны стохастические модели, предназначенные для 

анализа квазистационарных режимов транспортировки газа [74, 75], а также 

предложены методы расчёта стационарных и нестационарных процессов течения 

газа с использованием численных алгоритмов и теории графов [22, 29]. Отдельное 

внимание уделяется вопросам гидравлических расчётов и моделированию работы 

КС [73], что имеет ключевое значение для повышения энергоэффективности 

системы. 

На сегодняшний день вопросы оптимизации процессов добычи и 

транспортировки природного газа остаются важной задачей для эффективного 

использования природных ресурсов. В связи с этим в научных исследованиях 

активно обсуждаются различные характеристики трубопроводных систем и 

методы их улучшения. Среди ключевых направлений выделяются исследования, 

направленные на снижение рисков перебоев в поставках газа [129, 133, 145, 151, 

155, 156], увеличение пропускной способности на газораспределительной станции 

(ГРС) [88, 109, 113], а также повышение экономической эффективности 

функционирования газотранспортных сетей [86, 160]. 

В научной литературе описаны различные методы оптимизации ГТС, 

включая определение наиболее эффективного расположения КС [105], что 

позволяет сократить энергопотребление [95]. Также исследователи акцентируют 

внимание на минимизации общих эксплуатационных затрат трубопроводных 

сетей [135, 148] и оптимальном определении числа ГПА в системе [127, 139, 157]. 

Примером применения численного моделирования является работа Ning и др. 

(2022) [138], в которой рассматривался проект многоствольных скважин в пластах 

с низкой проницаемостью, содержащих газовые гидраты. 

Ранее проведённые исследования также акцентировали внимание на 

вопросах сокращения потребления электроэнергии трубопроводными сетями 
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[137], уменьшения расходов на топливо для собственных нужд трубопроводов 

[159], увеличения ёмкости газовых хранилищ [112] и улучшения способности 

трубопроводов к совместной транспортировке водорода и природного газа [119]. 

Также внимание уделялось оптимизации размеров трубопроводной 

инфраструктуры [98, 127], снижению выбросов парниковых газов [83, 127, 136] и 

улучшению маршрутов прокладки трубопроводов [94, 134]. Например, в 

исследовании [167] была проанализирована эффективность добычи газа с 

морских месторождений гидратов, где было установлено, что скорость добычи из 

трёхфазного слоя в 2,5 раза превышает скорость добычи из слоя, содержащего 

только гидраты, при этом снижение давления в трёхфазном слое составляет лишь 

треть от аналогичного показателя для слоя с гидратами. 

В нескольких исследованиях акцентировалось внимание на проведении 

стохастического анализа затрат и выгод для оценки эффективности новой 

газотранспортной инфраструктуры, направленной на повышение надежности 

поставок природного газа (Cabrales и др., 2022) [100]. В одной из таких работ был 

применён алгоритм Fruit Fly для прогнозирования потребления энергии в сетях 

магистральных трубопроводов [120].  

На основании анализа научной литературы методы оптимизации 

трубопроводных сетей можно условно разделить на две крупные категории: 

традиционные и нетрадиционные. Среди традиционных подходов широкое 

распространение получили метод обобщённого редуцированного градиента [81, 

114, 143], динамическое программирование [101, 105, 128, 167] и методы 

нелинейной оптимизации. Несмотря на свою популярность, эти методы имеют 

определённые ограничения. Так, метод обобщённого редуцированного градиента 

требует использования непрерывных и дифференцируемых целевых функций, что 

делает его неприменимым в случаях с разрывными или недифференцируемыми 

функциями.  

Динамическое программирование широко используется для разделения 

сложных трубопроводных сетей на более простые участки с целью их поэтапной 

оптимизации. Этот метод показывает высокую эффективность при работе с 
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небольшими сетями, однако при увеличении масштабов сети возникают 

значительные трудности в нахождении глобального оптимального решения. Ещё 

один распространённый традиционный подход – методы нелинейной 

оптимизации, включая последовательное программирование, которые 

предполагают упрощение сложных уравнений посредством математических 

преобразований. Тем не менее, данные методы требуют точного начального 

приближения и часто сталкиваются с трудностями из-за высокой сложности 

моделей и многообразия переменных. 

Возникающие сложности при использовании традиционных методов 

оптимизации подтолкнули исследователей к разработке более гибких и 

эффективных подходов. В результате появились нетрадиционные методы, 

которые демонстрируют высокую устойчивость и способность к адаптации. 

Среди них особое место занимают методы табу-поиска [97, 107, 142, 150], 

алгоритмы имитации отжига [131, 146, 147], подходы на основе нечеткой логики 

[132], а также алгоритмы муравьиной колонии [89, 103] и генетические 

алгоритмы [86, 111, 146, 152]. Эти методы позволяют решать сложные задачи 

оптимизации, обходя ограничения, характерные для традиционных подходов. 

Одним из главных достоинств нетрадиционных методов оптимизации 

является их способность начинать поиск решения с произвольной точки в 

пределах допустимого диапазона значений. Это позволяет алгоритмам постепенно 

находить глобальный оптимум, избегая попадания в ловушки локальных 

экстремумов. Такая особенность делает их особенно полезными для решения 

сложных многомерных задач. Однако с ростом популярности подобных методов 

возникает необходимость в проведении сравнительных исследований для оценки 

их эффективности в различных сценариях. Такие исследования могут служить 

ценным инструментом для управляющих трубопроводными системами, помогая 

им выбрать наиболее подходящие алгоритмы для решения конкретных задач. 

Интеллектуальные методы анализа и оптимизации открывают новые пути 

повышения эффективности управления газотранспортными потоками. 

Применение машинного обучения, эволюционных алгоритмов и гибридных 
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подходов позволяет улучшить точность прогнозов, снизить эксплуатационные 

затраты и повысить надежность системы. Внедрение интеллектуальных систем в 

процессы управления газотранспортными потоками является перспективным 

направлением, способствующим повышению экономической эффективности и 

устойчивости газотранспортного комплекса. 

 

Несмотря на декларируемую в исследованиях направленность на 

достижение экономической оптимизации, большинство работ концентрируется 

преимущественно на совершенствовании технических и эксплуатационных 

параметров. Основное внимание уделяется снижению энергопотребления КС, 

уменьшению потерь давления в трубопроводах и анализу влияния режимных 

характеристик на эффективность функционирования газоперекачивающего 

оборудования. При этом экономическая составляющая зачастую рассматривается 

лишь косвенно либо вовсе остаётся за пределами основного анализа. 

В литературе предложено множество критериев оптимизации транспортных 

потоков. Так, в справочном пособии [55] выделяются ключевые показатели – 

минимизация товаро-транспортной работы (ТТР) и сокращение затрат на услуги 

транспортировки газа. Помимо этих основных параметров, в документе указаны 

дополнительные характеристики, экономическая интерпретация которых не 

всегда имеет строго формализованное выражение. Минимизация суммарной ТТР, 

представляющей собой произведение объёма транспортируемого газа на 

расстояние его перемещения по маршрутам, как правило, приводит к снижению 

энергопотребления. Однако данный показатель имеет преимущественно 

технический характер и не всегда напрямую отражает экономическую 

эффективность, ограничиваясь лишь оптимизацией эксплуатационных 

параметров системы транспортировки. 

В документе [6] рассматривается подход к снижению энергозатрат при 

транспортировке газа с использованием метода последовательных приближений 

(Successive Linear Programming). В нём подробно описаны этапы оптимизации, 

приведены расчётные зависимости для определения расхода топливного газа, 
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учитывающие кубическую зависимость его объёма от величины потока через 

укрупнённый участок ГТС, а также методика выделения доли электроэнергии, 

потребляемой электроприводными газоперекачивающими агрегатами (ЭГПА), из 

общей структуры энергозатрат. Однако экономическая составляющая 

оптимизации в документе не раскрыта в достаточной степени. 

Изменение маршрутов транспортировки между различными 

газотранспортными коридорами или замена ГПА на ЭГПА не всегда 

обеспечивают снижение совокупных расходов в стоимостном выражении. В 

соответствии с приказом [13], цена природного газа варьируется по регионам: на 

01.01.2025 стоимость для оптовых потребителей в Республике Татарстан 

составляет 6209 руб./тыс. м³, тогда как в Саратовской области она достигает 6690 

руб./тыс. м³. Следовательно, перераспределение потоков из зоны ответственности 

ООО «Газпром трансгаз Казань» в зону деятельности ООО «Газпром трансгаз 

Саратов» способно снизить затраты в физическом выражении, но одновременно 

вызвать рост расходов на закупку газа в денежном эквиваленте, что подчёркивает 

необходимость комплексной экономической оценки принимаемых решений. 

1.4. Автоматизированные системы диспетчерского управления и их 

влияние на экономику транспорта природного газа  

В соответствии с положениями [16], ПАО «Газпром» отвечает за 

обеспечение надёжного и бесперебойного газоснабжения потребителей, а также за 

выполнение международных договорных обязательств Российской Федерации по 

поставкам газа [16, статья 13]. Компания располагает крупнейшей в мире 

системой магистральных газопроводов высокого давления, охватывающей 

Европейскую часть России и Западную Сибирь, при этом активно развивает 

газотранспортную инфраструктуру на востоке страны. 

В состав ЕСГ входят крупнейшие магистральные газопроводы, такие как 

«Средняя Азия – Центр I, II», «Система Н.Тура – Пермь – Горький – Центр», 

«Северный коридор» и другие. К основным объектам ГТС восточных регионов 

России относятся газопроводы «Сила Сибири», «Сахалин – Хабаровск – 

Владивосток» и «Соболево – Петропавловск-Камчатский», играющие ключевую 
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роль в расширении географии поставок и формировании единого 

газотранспортного пространства страны. 

В настоящее время к ГТС ПАО «Газпром» подключены 231 месторождение, 

функционируют 188 установок комплексной подготовки газа и 73 дожимные КС 

добычного комплекса. Общая протяженность магистральных газопроводов и 

газопроводов-отводов, находящихся в эксплуатации ГТО компании, составляет 

178,2 тыс. км (включая объекты в Сибири и на Дальнем Востоке), из которых 

173,7 тыс. км входят в ЕСГ. В транспортировке газа задействовано 19 дочерних 

газотранспортных предприятий ПАО «Газпром», а также 291 КС, оснащенные 

более чем 4 тысячами газоперекачивающих агрегатов, совокупная мощность 

которых по ЕСГ достигает 49 ГВт. 

Экономическая значимость эффективного управления ГТС обусловлена 

высокой капиталоемкостью инфраструктуры и необходимостью оптимизации 

эксплуатационных расходов. ПАО «Газпром», являясь ключевым субъектом 

газовой отрасли, стремится к повышению экономической эффективности 

транспортировки газа за счет внедрения современных технологий, автоматизации 

процессов управления и цифровых решений. Одним из приоритетных 

направлений является минимизация затрат на ТЭР, что достигается посредством 

оптимизации режимов работы КС и повышения энергоэффективности 

оборудования. 

Деятельность по транспортировке и хранению природного газа 

регулируется в соответствии с [14]. В рамках данного регулирования услуги по 

транспортировке газа по ЕСГ предоставляются ПАО «Газпром» на основе 

принципов недискриминационного доступа и экономической обоснованности 

тарифов, что обеспечивает прозрачность и конкурентоспособность газового 

рынка. 

Эффективность работы магистральных ГТС во многом определяется 

точностью распределения потоков и качеством централизованного диспетчерского 

управления. Существенный запас надёжности, заложенный в систему ещё в 

советский период, в сочетании с постоянной модернизацией технологической 
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инфраструктуры, позволяет ПАО «Газпром» поддерживать устойчивую 

транспортировку газа даже в периоды пикового сезонного потребления. 

Дополнительным фактором эффективности выступает многовариантность 

маршрутов транспортировки по ЕСГ, обеспечивающая высокую гибкость 

логистических решений, что имеет ключевое значение для поддержания баланса 

поставок и снижения экономических рисков. 

Ключевую роль в управлении газовыми потоками играет 

модернизированная Автоматизированная Система Диспетчерского Управления 

ЕСГ (М АСДУ ЕСГ). Этот интегрированный программно-аппаратный комплекс 

обеспечивает сбор, обработку и анализ данных о технологических объектах 

газотранспортной сети, включая балансовые показатели, режимы работы КС и 

динамику потребления. Использование цифровых технологий и методов 

прогнозного моделирования позволяет оперативно реагировать на изменения 

рыночной конъюнктуры, повышая экономическую эффективность системы. 

Функциональная структура М АСДУ ЕСГ включает подсистемы 

оперативного управления, контроля технического состояния оборудования, учета 

ремонтных работ, а также аналитические блоки для оценки эффективности 

функционирования ГТС. Внедрение интеллектуальных алгоритмов анализа 

больших данных и элементов машинного обучения способствует повышению 

точности прогнозирования газопотребления, что, в свою очередь, минимизирует 

риски возникновения дисбалансов в системе. 

С момента ввода в эксплуатацию в 2016 году М АСДУ ЕСГ проходит этап 

непрерывного совершенствования, направленного на повышение надёжности, 

увеличение скорости обработки информации и расширение функциональных 

возможностей систем поддержки управленческих решений. Объём данных, 

передаваемых с нижних уровней управления, увеличился более чем в пять раз и 

достиг 247 тысяч единиц, при этом общее число обрабатываемых показателей 

превысило 359 тысяч [49, стр. 39]. Такие результаты отражают высокую 

адаптивность системы к динамичным условиям газового рынка и подчёркивают 
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необходимость дальнейшего внедрения современных цифровых технологий в 

управление газотранспортной инфраструктурой. 

В соответствии с нормативным стандартом СТО Газпром [1] определена 

четырехуровневая иерархическая система диспетчерского управления ГТС, где 

каждый уровень выполняет свои функции, а нижестоящие уровни являются 

объектами управления для вышестоящих (рисунок 7). 

Каждый уровень диспетчерского управления формирует и реализует 

определенные цели, используя доступные средства их достижения. Взаимосвязь 

между уровнями строится по принципу «цель-средство»: задачи, поставленные на 

верхнем уровне, становятся целевыми установками для нижнего уровня, который, 

в свою очередь, реализует их посредством своих механизмов управления. Система 

диспетчерского управления газотранспортной инфраструктурой функционирует 

как единая координированная структура, обеспечивающая надежность и 

эффективность транспортировки газа в соответствии с экономическими и 

технологическими требованиями отрасли. 

 

Рисунок 7. Четырехуровневая иерархическая система диспетчерского 

управления ГТС 

 

Информация, поступающая с измерительных приборов объектов 

газотранспортной инфраструктуры, передаётся на последующие уровни 
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управления, где проходит обработку и сохраняется в подсистеме хранения М 

АСДУ ЕСГ. На верхнем уровне управления особое значение приобретает 

организация системы выявления аномалий и обнаружения ошибок во временных 

рядах технологических данных. Эффективное функционирование такой системы 

обеспечивает своевременное распознавание отклонений, снижает вероятность 

некорректных расчётов и повышает точность прогнозирования эксплуатационных 

параметров ГТС. 

1.4.1. Подходы к стоимостной оценке эффектов от внедрения 

оптимизационных моделей 

Внедрение оптимизационных моделей в процессы управления потоками 

природного газа направлено на повышение экономической эффективности 

функционирования ГТС. Оценка экономического эффекта от внедрения таких 

моделей требует применения подходов, позволяющих не только выявить 

потенциальную экономию ресурсов, но и количественно оценить финансовые 

результаты оптимизационных решений с учетом реальных условий эксплуатации. 

Основными направлениями оценки экономических эффектов при внедрении 

моделей оптимизации являются: 

1. Расчет сокращения расходов на топливный газ. 

Экономия топливного газа является одним из ключевых факторов, 

обеспечивающих экономический эффект при использовании оптимизационных 

моделей. Для стоимостной оценки данного эффекта проводится сравнение 

фактических расходов топливного газа до и после применения оптимизации. 

Разница между этими показателями переводится в денежный эквивалент путем 

умножения на стоимость газа, установленную ФАС России. Таким образом, 

экономия рассчитывается по формуле 15: 

𝐸тг = ∑(𝑄до,𝑖 − 𝑄после,𝑖)

𝑛

𝑖=1

⋅ 𝐶газ,𝑖 (15) 

где 𝐸тг – экономия топливного газа; 𝑄до,𝑖 – расход топливного газа до внедрения 

мероприятий в i-й балансовой зоне; 𝑄после,𝑖 – расход после внедрения; 𝐶газ,𝑖 – цена 
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газа в i-й балансовой зоне, установленная ФАС России; 𝑛 – количество 

балансовых зон.  

2. Оценка снижения эксплуатационных затрат. 

Помимо прямого эффекта от экономии топливного газа, оптимизационные 

модели позволяют сократить затраты на техническое обслуживание и ремонт 

оборудования за счет выбора более рациональных режимов его эксплуатации. 

Данный эффект может быть оценен на основе анализа изменения затрат на 

обслуживание оборудования (формула 16): 

𝐸экспл = Здо − Зпосле (16) 

где 𝐸экспл – экономический эффект от снижения эксплуатационных затрат; Здо и 

Зпосле – эксплуатационные затраты на оборудование до и после внедрения 

оптимизационных решений соответственно. 

3. Увеличение пропускной способности и доходов от транспортировки газа. 

Важным фактором является возможность роста доходов за счет увеличения 

пропускной способности трубопроводов, обеспечиваемой оптимальным 

распределением давления и потоков газа в системе. В денежном выражении такой 

эффект рассчитывается как дополнительная выручка от транспортировки 

дополнительного объема газа (формула 17): 

𝐸тр = (𝑄тр
после − 𝑄тр

до) × 𝑇газ (17) 

где 𝐸тр– дополнительная выручка, связанная с ростом пропускной способности; 

𝑄тр
до

, 𝑄тр
после – объемы транспортировки газа до и после оптимизации; 𝑇газ – тариф 

или цена за транспортировку единицы газа, установленный ФАС России. 

Комплексная стоимостная оценка экономических эффектов от внедрения 

оптимизационных моделей в управление ГТС позволяет объективно обосновать 

целесообразность таких проектов и предоставляет практическую основу для 

принятия инвестиционных и управленческих решений, направленных на 

повышение экономической эффективности деятельности газотранспортного 

предприятия. 



59 
 

1.4.2. Применение сценарного анализа и моделей «что-если» для сравнения 

вариантов 

Внедрение оптимизационных решений в ГТС неизбежно сопровождается 

некоторой неопределённостью, связанной с изменением внешних условий и 

внутренними характеристиками эксплуатации системы. В этих условиях особое 

значение приобретает использование сценарного анализа и моделей «что-если» 

(what-if analysis), позволяющих оценить последствия и экономические эффекты от 

различных решений и ситуаций, а также выбрать наиболее выгодный итоговый 

вариант из нескольких возможных альтернатив. 

Сценарный анализ представляет собой методический подход, в котором 

формируется несколько альтернативных вариантов (сценариев) развития ситуации 

в зависимости от различных условий и предположений. При этом каждый 

сценарий включает свои собственные наборы входных параметров, отражающих 

возможные внешние и внутренние изменения: изменения объёмов 

транспортировки газа, колебания рыночных цен на топливный газ, изменения 

технологических условий (например, температуры, давления или физико-

химического состава газа). Использование сценарного анализа позволяет 

количественно и качественно определить риски и выгоды от внедрения 

оптимизационных решений в условиях возможной неопределённости. 

В практике применения сценарного подхода для оценки экономических 

эффектов от внедрения оптимизационных моделей обычно выделяют три базовых 

типа сценариев: 

- Оптимистичный сценарий отражает наиболее благоприятное сочетание 

условий: стабильные или возрастающие объемы транспортировки газа, 

относительно низкие темпы роста цены на газ, высокая степень технологической 

эффективности оборудования. В таком сценарии экономический эффект от 

внедрения оптимизационных решений будет максимальным. 

- Реалистичный сценарий основывается на усреднённых или наиболее 

вероятных прогнозах изменений внешних и внутренних показателей. Он 
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позволяет получить наиболее вероятную оценку экономического эффекта, 

учитывающую среднестатистические условия работы ГТС. 

- Пессимистичный сценарий отражает неблагоприятное развитие событий, 

например, снижение объемов прокачки газа, высокие темпы роста цены на газ, 

ухудшение технического состояния оборудования. В этих условиях можно 

оценить нижнюю границу экономического эффекта и риски от внедрения 

предложенных решений. 

Методология сценарного анализа обычно реализуется следующим образом: 

1. Определяются ключевые переменные и показатели, подверженные 

изменениям. 

2. Формируется набор сценариев, в каждом из которых задаются различные 

комбинации выбранных показателей. 

3. Проводится моделирование работы ГТС в рамках каждого сценария с 

использованием разработанных оптимизационных моделей. 

4. Рассчитываются показатели экономического эффекта (сокращение затрат, 

NPV, IRR и др.) для каждого сценария. 

5. Выполняется сравнительный анализ полученных результатов и 

выбирается наиболее целесообразный сценарий или оптимизационное решение. 

Отдельным направлением анализа является применение моделей «что-

если». Данные модели позволяют в интерактивном режиме оперативно изменять 

ключевые переменные системы и быстро получать количественные оценки 

последствий таких изменений. Например, диспетчер может оперативно проверить, 

как изменятся расходы топливного газа или эксплуатационные затраты, если 

повысить давление на КС или изменить конфигурацию газотранспортных потоков. 

Применение моделей «что-если» дает диспетчерскому персоналу 

возможность более уверенно и оперативно принимать управленческие решения, 

так как позволяет заранее оценить последствия изменения технологических 

режимов и условий эксплуатации оборудования. Такие модели часто реализуются 

в составе специализированных СППР, интегрированных с информационными 

системами газотранспортных предприятий. 
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Совместное применение сценарного анализа и моделей «что-если» 

позволяет повысить качество и экономическую обоснованность решений по 

управлению газотранспортными потоками, снизить риски принятия 

неоптимальных решений и обеспечить адаптивность ГТС к изменяющимся 

внешним и внутренним условиям. Это, в свою очередь, способствует улучшению 

общей экономической эффективности газотранспортной деятельности. 

1.5. Выводы по главе 1 

В ходе анализа существующих научных исследований, посвящённых 

вопросам прогнозирования, оптимизации и управления потоками природного газа, 

установлено, что как отечественные, так и зарубежные авторы внесли 

существенный вклад в развитие методов обработки технологических данных, 

построения прогнозных моделей и оптимизации режимов работы 

газотранспортных систем. Однако, несмотря на значительное внимание к 

техническим аспектам повышения эффективности ГТС, в большинстве работ 

недостаточно полно рассмотрены вопросы комплексной экономической оценки 

принимаемых решений. 

К сожалению, в указанных исследованиях в достаточной степени не 

раскрыты вопросы, связанные с интеграцией технических моделей с 

экономическими критериями оптимальности, учётом стоимости топливного газа, 

влиянием компонентного состава на экономику поставок и построением систем 

поддержки принятия решений, ориентированных на стоимостную оптимизацию. 

Несмотря на детальную проработку отдельных направлений – таких как 

моделирование потоков, оптимизация энергопотребления компрессорных станций 

и снижение технических потерь – рассмотренные исследования не обеспечивают 

комплексного подхода к управлению потоками природного газа с учётом 

совокупного влияния технических и экономических факторов. Анализ показывает, 

что на современном этапе развития газотранспортной отрасли необходимо 

переходить от локальной оптимизации отдельных технологических элементов к 

системной интеграции технических и стоимостных критериев, что позволит 

достичь максимальной эффективности эксплуатации инфраструктуры. 
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Проведённый обзор подтвердил необходимость разработки методов, 

сочетающих прогнозирование, выявление и коррекцию ошибок в данных, 

оптимизацию потоков газа с учётом экономических критериев, а также создания 

интеллектуальных систем поддержки принятия решений, направленных на 

достижение стоимостной эффективности работы Единой системы газоснабжения.  

Таким образом, в отличие от традиционных подходов, ориентированных 

преимущественно на технические аспекты, в диссертации впервые акцентируется 

интеграция экономических и технологических факторов. 
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2. МОДЕЛИРОВАНИЕ, ВЫЯВЛЕНИЕ АНОМАЛИЙ И ЭКОНОМИЧЕСКАЯ 

ОПТИМИЗАЦИЯ ТОПЛИВНЫХ ЗАТРАТ 

2.1. Цифровые методы мониторинга и выявления аномалий в данных 

газовой инфраструктуры 

2.1.1. Применение базовых и традиционных методов выявления аномалий  

Традиционные методы анализа временных рядов технологических данных, 

применяемые в газовой отрасли, нередко используются изолированно, без учёта 

информации с соседних технологических объектов и связанных параметров. 

Такой подход упрощает обработку данных и позволяет глубже изучать 

особенности отдельных временных рядов, однако существенно ограничивает 

возможности выявления сложных взаимосвязей между различными элементами 

ГТС. 

Изолированный анализ временных рядов имеет как достоинства, так и 

ограничения. К его преимуществам относится наличие широкого набора 

проверенных классических методов обнаружения аномалий, что обеспечивает 

гибкость выбора инструментов и их адаптацию под конкретные типы данных. 

Однако подобный подход несёт и серьёзные риски. Он может не учитывать 

взаимосвязанные изменения, возникающие вследствие аварий, ремонтных работ 

или экономически обусловленных изменений режимов эксплуатации 

газотранспортной инфраструктуры. В результате возможна некорректная 

интерпретация информации: изменения, вызванные внешними факторами, 

ошибочно классифицируются как аномальные, а системные отклонения, напротив, 

остаются незамеченными. 

На рисунке 8 представлены результаты работы трех наиболее 

распространенных методов идентификации аномалий во временных рядах. В 

качестве исходных данных использовались показатели расхода газа по одному из 

экспортных направлений. Первоначально данный временной ряд не содержал 

аномалий, поскольку экспортные поставки проходят строгую верификацию как со 

стороны российских регулирующих органов, так и со стороны зарубежных 

покупателей. Анализ полученных результатов демонстрирует, что разные методы 
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детекции аномалий могут идентифицировать их в верифицированных рядах 

данных. 

 

Рисунок 8. Результаты работы методов идентификации аномалий 

Результаты работы трех методов представлены в таблице 2: 

Таблица 2. Результаты работы методов идентификации аномалий 

Метод Описание алгоритма обнаружения аномалий 

Количество 

выявленных 

аномалий 

Isolation 

Forest 

Основан на построении множества случайных 

деревьев, где аномальные точки изолируются 

быстрее, так как они находятся в разреженных 

областях данных 

32 

One-Class 

SVM 

Использует алгоритм опорных векторов для 

построения гиперплоскости, отделяющей 

нормальные данные от выбросов в 

многомерном пространстве 

55 

Local 

Outlier 

Factor 

Сравнивает плотность данных вокруг каждой 

точки с плотностью ее соседей, присваивая 

высокий LOF-коэффициент точкам, которые 

существенно отличаются от локальной 

плотности своих соседей 

32 

 

Классические методы обнаружения аномалий продемонстрировали высокий 

уровень ложных срабатываний, особенно в тех случаях, когда отклонения в 

данных обусловлены допустимыми операционными колебаниями, а не реальными 
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сбоями. Для снижения частоты ложных срабатываний необходимо проводить 

дополнительный анализ данных по соответствующей ветке графовой структуры, 

где расположен источник информации, что позволит учитывать взаимосвязи 

между характеристиками системы и обеспечить более точную идентификацию 

аномальных событий. 

Анализ технологических данных с целью выявления аномалий требует 

глубокого понимания их физического смысла и особенностей. Каждый тип 

данных обладает собственными характеристиками – диапазоном допустимых 

значений, уровнем дискретности, физическими и техническими ограничениями. 

Например, отдельные параметры могут принимать только целочисленные 

значения, тогда как такие показатели, как давление и абсолютная температура, по 

своей природе не могут быть отрицательными. Кроме того, технологические 

ограничения, например максимальная пропускная способность газопровода, 

накладывают дополнительные требования к корректности анализа временных 

рядов. Игнорирование этих особенностей способно привести к ошибочной 

классификации нормальных значений как аномальных, что снижает точность 

последующих моделей машинного обучения. Вместе с тем проверка данных на 

соответствие допустимым диапазонам представляет собой относительно 

несложную задачу и может выполняться на ранних этапах обработки информации. 

Как отмечалось ранее, в подсистему хранения данных регулярно поступает 

информация по 359 тысячам показателей, характеризующих различные аспекты 

функционирования ГТС. По состоянию на начало 2024 года в подсистеме 

нормативно-справочной информации зафиксировано около 1,5 тысяч ключевых 

параметров, включающих показатели давления, температуры, количества 

работающих агрегатов, расхода газа и другие технологические характеристики 

[36]. Все данные представлены в 116 различных единицах измерения, при этом на 

10 наиболее часто используемых единиц приходится более 84% всех показателей, 

что отражено на рисунке 9. 
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Рисунок 9. Распределение показателей по единицам измерения 

 

Анализ единиц измерения показателей и соответствующих объектов 

позволяет установить предельные границы допустимых значений. Выход 

показателя за эти границы с высокой вероятностью свидетельствует о наличии 

ошибок измерений или аномальных отклонений в функционировании объектов 

ГТС. Определение таких границ играет ключевую роль в формировании 

эффективных алгоритмов контроля качества данных и предупреждения 

возможных сбоев в системе (см. таблицу 3). 

Таблица 3. Определение допустимых значений показателей 

Номер ID Единица измерения показателя 

Количество 

классов 

показателя 

Допустимые значения 

1267986 Штука шт. 78 𝑛 = {𝑥 ∈  ℤ: 𝑥 ≥ 0} 

1268040 Тысяча тонн тыс. т 111 

𝑛 = {𝑥 ∈  ℝ: 𝑥 ≥ 0} 

1267994 
Тысяча метров 

кубических в час 
тыс. м3/час 72 

1267995 
Тысяча метров 

кубических 
тыс. м3 200 

1268026 Тонна тонн 255 

9954674 Тонна в час т/час 42 

1268001 

Килограмм-силы на 

квадратный 

сантиметр 

кгс/см2 100 

1267982 Не определена Б/н 70   

1267997 Градус Цельсия °C 263 𝑛 = {𝑥 ∈  ℝ: −271 ≤ 𝑥} 

1268036 Молярный процент % мол. 66 𝑛 = {𝑥 ∈  ℝ: 0 ≥ 𝑥 ≥ 1} 

78

111

72

200

255

42

100

70

263

66

шт

тыс.т

тыс.м3/час

тыс.м3

тонн

т/час

кгс/см2

Б/н

°C

% мол.



67 
 

Такой подход обеспечивает раннюю фильтрацию некорректных данных и 

способствует повышению надежности аналитических расчетов. 

Следующий этап анализа данных предполагает проверку допустимых 

диапазонов значений параметров в соответствии с их принадлежностью к 

конкретным технологическим объектам. Для этого производится декомпозиция 

единиц измерения по группам параметров, учитывая специфику работы 

оборудования и инфраструктуры ГТС. В таблице 4 представлен фрагмент 

подобного распределения, демонстрирующий, как единицы измерения 

соотносятся с различными технологическими процессами.  

Анализ декомпозированных единиц измерения даёт возможность более 

точно определить допустимые диапазоны параметров, характеризующих работу 

объектов ГТС. Так, например, объём подачи газа потребителю через ГРС 

относится к классу 0469701 и может изменяться от 0 тыс. м³/ч (в случаях планово-

предупредительного ремонта, аварийных ситуаций или отключения газопровода) 

до максимально допустимого значения, определяемого техническими 

параметрами газораспределительной системы. Верхняя граница диапазона 

ограничивается пропускной способностью подключённого трубопровода и 

характеристиками запорно-регулирующей арматуры, установленной на выходе из 

ГРС. 

Определение подобных граничных значений позволяет своевременно 

фиксировать отклонения от нормы и формировать эффективные стратегии 

управления газораспределительными процессами, что способствует повышению 

надёжности и безопасности функционирования системы. 

Декомпозицию единиц измерения и параметров целесообразно проводить 

до уровня конкретных объектов и элементов газотранспортной инфраструктуры, 

обладающих строгой типизацией, зафиксированной в подсистеме нормативно-

справочной информации. Примером такой типизации служит газоперекачивающее 

оборудование, применяемое на КС. Ключевым элементом газоперекачивающей 

установки является привод, определяющий режимы работы агрегата и его 

энергетическую эффективность.  
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Таблица 4. Фрагмент параметров, относящихся к единице изменения «тыс. 

м3/час» 

Номер класса 
Сокращенное 

наименование 
Полное наименование 

0039063 Q топл. газа Расход топливного газа 

0043140 Q Расход газа 

0043140 Q топл. газа Расход топливного газа 

0169635 Q Расход газа 

0860878 Q Расход газа 

7007110 Q SFLU Отбензинивание ШФЛУ 

7007110 Q с.н. Расход газа на собственные нужды 

7007110 Q кг Расход кислого газа 

7010054 Q кисл. газа Расход кислого газа 

0304946 Qрев Расход газа (реверсивный) 

0304948 Q Расход газа 

0304948 Qрев Расход газа (реверсивный) 

0469701 Q г. на потр. с ГРС Расход газа на потребителя с ГРС 

0471045 Q осушк. газа Осушка газа 

0471045 Qвых этана Поставка этана 

0471045 Qвх газа сыр. Поступление газа сырьевого 

0471045 Qвх кгн (v) 
Поступление конденсата газового нестабильного 

(объемное) 

0471045 Q кисл. газа Расход кислого газа 

0471045 
Q тов. газа вых. 

(суммарный) 

Расход товарного газа на выходе завода 

(суммарный) 

0471045 Q серооч. газа Сероочистка газа 

0594482 Q доб. конд. (V) Добыча конденсата (объемная) 

0334346 Q доб. газа Добыча газа валовая 

0594482 Q стн Расход газа на СТН 

0062167 Q стн Расход газа на СТН 

0471045 Q стн Расход газа на СТН 

0047513 Q газа ит Расход газа в измерительном трубопроводе 

0471045 Q тех. линии (v) Загрузка технологической линии (объемная) 

0471045 Qвых кгс (v) 
Поставка конденсата газового стабильного 

(объемная) 

7007110 Q обессер. газа Расход обессеренного газа 

1654843 Q Расход газа 

0039063 Q компр. газа Расход компримированного газа 

0039063 Q гелия Расход компримированного гелия 

0047513 Q газа рев. Расход газа реверсивный 

0039063 Q стн реж. Расход газа на СТН по режиму 

1630299 Q Расход газа 

1671168 Q пост. газа Поставка (добыча товарная) газа 

1579255 Q рев. Расход газа реверсивный 
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Газоперекачивающие агрегаты, эксплуатируемые в дочерних обществах 

ПАО «Газпром», подразделяются по типу применяемого привода, что 

обеспечивает возможность учёта их эксплуатационных характеристик, уровня 

энергопотребления и технического состояния. В таблице 5 приведено 

распределение газоперекачивающих агрегатов по категориям привода. 

Таблица 5. Типы приводов газоперекачивающих агрегатов ПАО «Газпром» 

Тип привода Количество, шт. 

Газомотокомпрессоры 58 

Газотурбинный привод 4 088 

ГПА с поршневым двигателем 18 

Мобильная компрессорная 

установка 
9 

Электроприводные 665 

 

Наибольшее распространение среди приводов газоперекачивающих 

установок получили газотурбинные агрегаты, которые составляют 84,4% от 

общего количества агрегатов, эксплуатируемых на КС ПАО «Газпром». Их 

высокая доля обусловлена надежностью, энергоэффективностью и возможностью 

эксплуатации в широком диапазоне нагрузок. 

Важнейшим фактором эффективного функционирования 

газоперекачивающих агрегатов является их соответствие требованиям 

производительности и эксплуатационной надежности. Анализ данных показывает, 

что десять наиболее часто используемых моделей составляют более 67% от 

общего парка газоперекачивающих установок. Их распределение представлено на 

рисунке 10. 

Основные параметры газоперекачивающего оборудования отражаются в его 

эксплуатационной документации. Информация о ключевых характеристиках 

агрегатов – таких как производительность, энергопотребление, коэффициент 

полезного действия (КПД) и предельные нагрузки – доступна также в открытых 

источниках, например, для модели ГТК-101. 

 
1 https://infoks.ru/produkty/zarubezhnye-gazoperekachivayushchie-agregaty/152-kharakteristika-

gazoperekachivayushchikh-agregatov-gpa-gtk-10i-ir-gtk-25i-ir-i-gtnr-25i 



70 
 

 

Рисунок 10. Наиболее распространенные модели газоперекачивающих 

агрегатов 

 

Для обеспечения надежности работы КС необходимо устанавливать 

пределы допустимых значений технологических параметров на основе 

эксплуатационной документации. Эти ограничения позволяют своевременно 

выявлять отклонения в работе оборудования, минимизировать риски аварийных 

ситуаций и оптимизировать режимы эксплуатации с точки зрения экономической 

эффективности. Кроме того, строгий контроль показателей способствует 

увеличению срока службы оборудования и снижению затрат на техническое 

обслуживание и ремонт. 

 

2.1.2. Методы обнаружения аномалий на основе графового представления 

Единой системы газоснабжения 

ЕСГ может быть представлена в форме большого направленного графа, где 

узлы соответствуют объектам газотранспортной инфраструктуры – КС, 

газораспределительным узлам и точкам потребления, а рёбра отображают 

газопроводы или их совокупности, соединяющие эти объекты. В подобной модели 

связи между узлами отражают физические и технологические ограничения, 

включая пропускную способность трубопроводов, давление в сети и 

характеристики состава газа. Использование графового представления позволяет 
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проводить более точный анализ функционирования системы, выявлять 

потенциальные аномалии и формировать стратегии оптимизации потоков 

природного газа. 

В научной литературе представлен широкий спектр исследований, 

посвящённых моделированию ЕСГ как графовой структуры. Так, в работе Кулика 

В.С. [35] рассматриваются методы оптимизации режимов транспортировки газа с 

учётом неопределённости исходных данных, что обеспечивает возможность 

адаптивного управления потоками в системе. В исследованиях Казака А.С. [28] 

предложен метод узловых потенциалов для расчёта режимов функционирования 

магистральных газопроводов, который служит эффективным инструментом 

анализа и оптимизации потоков в ЕСГ. Указанные работы демонстрируют, что 

графовые модели позволяют глубже исследовать взаимосвязи между элементами 

ГТС, что имеет ключевое значение для выявления аномалий и повышения 

эффективности функционирования системы. 

С экономической точки зрения, графовые методы анализа ЕСГ позволяют 

оптимизировать затраты на транспортировку газа, снижая издержки, связанные с 

перераспределением потоков, снижением потерь давления и повышением 

энергоэффективности работы КС. Включение экономических факторов в 

графовую модель открывает новые возможности для прогнозирования 

операционных расходов и выбора оптимальных стратегий управления ресурсами. 

Применение классических методов обнаружения аномалий в графовых 

моделях при анализе реальных данных требует учёта ряда дополнительных 

факторов и нередко – участия специалистов диспетчерского персонала 

Центрального производственно-диспетчерского департамента. Так, во время 

проведения плановых ремонтов, аварийно-восстановительных работ или 

технического обслуживания газопроводов подобные алгоритмы могут ошибочно 

фиксировать наличие аномалий, хотя на практике они отсутствуют. 

 

Большинство существующих методов графового анализа ориентированы на 

работу со статическими сетями, тогда как газотранспортные системы, включая 



72 
 

ЕСГ, характеризуются динамичностью, временными изменениями и регулярными 

оперативными корректировками режимов. В этой связи возникает потребность в 

создании специализированных алгоритмов детекции аномалий, адаптированных к 

особенностям функционирования газотранспортной инфраструктуры. Такие 

методы должны учитывать специфику технологических процессов, временные 

зависимости и ограничения, определяемые текущими режимами транспортировки 

газа. 

В относительно простой ГТС, где отсутствует значительное смешение 

потоков газа, для выявления аномалий требуется предварительный анализ 

временного смещения физико-химических параметров (ФХП) газа. Такой подход 

позволяет сопоставлять измеренные показатели на различных участках сети, 

выявляя системные отклонения и нарушения транспортировки. 

 

Рисунок 11. Схема расположения ГИС 

 

На рисунке 11 представлена схема расположения точек измерения ФХП 

природного газа, иллюстрирующая принцип анализа временного смещения. На 

рисунке 12 приведены данные по концентрации метана (% мол.) в природном газе, 

измеренные на двух газоизмерительных станциях (ГИС), удаленных друг от друга 

на 2000 км. В одном случае данные отображены без временного сдвига, в другом – 

со смещением на 60 часовых интервалов. 
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Рисунок 12. Концентрация метана (CH4) на ГИС 1 и ГИС 2 до и после 

смещения временного интервала 

Данные ГИС поступают в систему хранения с интервалом в два часа, 

поэтому корректная идентификация аномалий во временных рядах динамических 

данных требует предварительного определения оптимального временного сдвига 

перед применением классических методов обнаружения аномалий. 
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Для вычисления оптимального размера временного сдвига необходимо 

определить максимальное значение коэффициента корреляции Пирсона в 

заданном диапазоне временных шагов.  

В таблице 6 приведен расчет коэффициента корреляции Пирсона для 

концентрации метана на ГИС 1 и ГИС 2 с различным шагом сдвига данных. 

Несмотря на то, что различия между значениями незначительны, 

коэффициент корреляции Пирсона в рассматриваемом примере достигает 

наилучший результат при лаге в 60 часов, что подтверждает высокую степень 

схожести измерений, полученных на газоизмерительных станциях (ГИС) 1 и 2. 

Данный результат иллюстрирует возможность учета временных задержек при 

анализе ФХП газа в процессе его транспортировки. Проверка статистической 

значимости различий не проводилась, поскольку целью анализа было не 

доказательство значимого превосходства, а выбор рабочей конфигурации модели 

на основе максимального значения корреляции. 

Таблица 6. Расчет коэффициента корреляции Пирсона 

Сдвиг, шагов Коэффициент корреляции Пирсона 

-70 0,7869 

-69 0,7909 

-68 0,7950 

-67 0,7994 

-66 0,8049 

-65 0,8113 

-64 0,8184 

-63 0,8255 

-62 0,8343 

-61 0,8437 

-60 0,8549 

-59 0,8514 

-58 0,8456 

-57 0,8385 

-56 0,8305 

-55 0,8201 

-54 0,8073 

-53 0,8001 

-52 0,7946 

-51 0,7882 

-50 0,7779 
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Для демонстрации подхода к идентификации аномалий в динамических 

данных, характеризующихся смешением потоков газа (рисунок 13) с различным 

компонентным составом, была использована модифицированная нейронная сеть, 

описанная в [37]. Построенная нейронная сеть используется для моделирования и 

краткосрочного прогнозирования значений временного ряда, отражающего 

динамику показателей потока газа (например, калорийности или концентрации 

компонентов состава природного газа). Задача идентификации аномалий решается 

путём анализа отклонений между прогнозируемыми значениями и фактическими. 

Аномальными считаются случаи, когда абсолютная ошибка прогноза превышает 

пороговое значение, установленное эмпирически или на основе статистических 

характеристик обучающей выборки. Такой подход позволяет учитывать сложные 

нелинейные зависимости и адаптироваться к изменяющимся условиям работы 

ГТС, что существенно повышает точность обнаружения аномалий и 

корректировки данных.  

 

 

Рисунок 13. Расположение узловых точек транспортировки газа 

 

Структура доработанной нейронной сети представлена в таблице 7. 
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Таблица 7. Архитектура нейронной сети 

Слой Размерность 
Количество 

параметров 
Описание слоя 

LSTM(34, 

return_sequences=True) 
(None, 30, 34) 5 032 

Слой долгосрочной памяти, 34 

ядра, возврат многомерной 

матрицы) 

Dropout(0.2) (None, 30, 34) 0 
Исключение 20% ячеек слоя из 

обучения 

LSTM(16, 

return_sequences=Fase) 
(None, 16) 3 264 

Слой долгосрочной памяти, 

возврат одномерного массива 

BatchNormalization (None, 16) 64 Нормализация входных данных 

Dense(20, 

activation="relu") 
(None, 20) 340 Полносвязанный слой из 20 ядер 

Dropout(0.2) (None, 20) 0 
Исключение 20% ячеек слоя из 

обучения 

Dense(1, 

activation="linear") 
(None, 1) 21 Полносвязанный слой из 1 ядра 

 

В разработанной модели нейронной сети использованы функции активации 

ReLU (Rectified Linear Unit) и линейная активация (Linear(x) = x). Формула 18, 

функции ReLU представлена ниже: 

ReLU(x)=max (0, x)      (18) 

или формула 19: 

 

{
Если x > 0, то ReLU(x) = x
Если x ≤ 0, то ReLU(x) = 0

     (19) 

Статистика параметров нейронной сети приведена в таблице 8: 

Таблица 8. Параметры нейронной сети 

Параметры Описание Количество  Объем памяти, Кб 

Total params Общее количество обучаемых 

параметров в модели 

26 101 101,96 

Trainable params Количество параметров, 

которые могут быть обучены 

8 689 33,94 

Non-trainable params Количество параметров, 

которые не обновляются в 

процессе обучения 

32 0,128 

Optimizer params Настройкам оптимизатора 17 380 67,89 

 

Обучение нейронной сети проводилось на данных о концентрации метана в 

природном газе, транспортируемом по газопроводу «Сила Сибири» между 

Ковыктинским и Чаяндинским месторождениями и Амурским 
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газоперерабатывающим заводом. Итоговые результаты работы модели на 

тестовой, проверочной и обучающей выборках представлены в таблице 9: 

Таблица 9. Результаты тестирования нейронной сети 

Группа данных 

Тест Стьюдента  

(t-критерий) 
F-критерий Критерий 

Дарбина - 

Уотсона 

MAPE 
Факт. знач. 

t 

p-

значение 

Факт. 

знач. F 

p-

значение 

Обучающая 

выборка 
-0,702 0,482 0,492 0,482 1,715 0,0085 

Проверочная 

выборка 
0,927 0,335 -0,963 0,335 1,265 0,0003 

Тестовая 

выборка 
0,098 0,754 -0,313 0,754 0,966 0,0003 

 

Анализ полученных данных показал, что нейронная сеть демонстрирует 

высокую точность прогнозирования, достигая MAPE менее 1%. Это 

свидетельствует о высокой степени соответствия предсказанных значений 

фактическим данным. Проведенные статистические тесты, включая критерий 

Стьюдента и F-тест, не выявили статистически значимых различий между 

средними и дисперсиями исследуемых выборок, что подтверждает надежность 

модели. 

Дополнительно, значение критерия Дарбина-Уотсона, близкое к 1, указывает 

на наличие слабой положительной автокорреляции в ошибках модели. Хотя этот 

эффект не критичен, он может свидетельствовать о возможностях дальнейшего 

совершенствования архитектуры модели для минимизации зависимости ошибок и 

повышения точности прогнозов. 

Применение нейронных сетей для прогнозирования концентрации 

компонентов природного газа в динамических системах доказало свою 

эффективность. Введение критерия допустимого или предельного отклонения 

фактического значения концентрации метана от прогнозируемого значений может 

стать инструментом раннего обнаружения ошибок в передаваемых данных. 

Диспетчерский контроль таких показателей должен стать частью процедуры 

детекции аномалий и оперативного выявления отклонений в ГТС. 
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2.1.3. Совмещение графовых методов и баланса потоков для мониторинга 

ГТС 

Одним из эффективных методов выявления аномалий в статических 

структурах ГТС является адаптация первого правила Кирхгофа [27]. В 

классической электротехнике это правило гласит, что сумма токов, входящих в 

узел, должна быть равна сумме токов, выходящих из него. Аналогичный принцип 

применим и к анализу потоков газа в ЕСГ. 

Упрощенная схема потоков газа в рамках деятельности ГТО представлена на 

рисунке 14.  

На схеме зеленым цветом обозначены источники поступления газа как в 

зону ответственности ГТО, так и внутри нее, а желтым – его распределение среди 

потребителей. 

 

Рисунок 14. Схема потоков газа балансовой зоны 

Баланс потоков газа в газотранспортной сети формулируется следующим 

образом: объём газа, поступающий в узел (например, балансовую зону, КС или 

газораспределительный пункт), должен соответствовать объёму газа, выходящему 

из него, с учётом расхода на СТН и возможных потерь. Значительные отклонения 

от этого соотношения могут указывать на наличие аномалий, обусловленных 

погрешностями измерительных приборов, сбоями при передаче данных, а также 

техническими нарушениями – утечками, авариями или несанкционированными 

подключениями к газораспределительной системе. 
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Формула для контроля целостности данных газовых потоков в балансовой 

зоне может быть представлена следующим образом (формулы 20 -23): 

∑Пост =  ∑Доб + ∑Перераб.+ + ∑ГТОвыше + ∑ПХГ−  (20) 

∑ГТО =  ∑СТН + ∑ΔЗапас+  + ∑Порт − ∑ΔЗапас−  (21) 

∑Расп =  ∑Перераб.−+ ∑ГТОниже  + ∑ПХГ+ + ∑Экспорт  (22) 

Таким образом:  

∑Пост =  ∑ГТО +  ∑Расп    (23) 

Использование данного подхода требует точного учёта всех потоков газа, 

что возможно лишь при наличии достоверных данных, поступающих с 

расходомерных датчиков. В сочетании с графовыми методами анализа такой 

подход позволяет выявлять систематические ошибки в измерениях, а также 

фиксировать резкие изменения в работе сети, которые могут свидетельствовать о 

потенциальных авариях или иных нештатных ситуациях. 

Для повышения точности обнаружения аномалий первый закон Кирхгофа 

может быть дополнен методами машинного обучения. Применение этих методов 

позволяет учитывать исторические данные, выявлять скрытые взаимосвязи в 

динамике газовых потоков и адаптивно корректировать модель, что делает 

процесс детекции отклонений более точным, устойчивым и информативным. 

 

2.1.4. Идентификация отклонений в работе ГТС с использованием 

квантильного анализа 

Выявление аномалий в пропускной способности газопроводов 

целесообразно проводить не только на основе проектных или паспортных данных, 

но и с использованием ретроспективного анализа эксплуатационных показателей. 

Одним из эффективных инструментов для этого является квантильный анализ, 

позволяющий определить значения, выходящие за рамки типичного диапазона 

функционирования системы. 

Квантиль представляет собой статистическую величину, разделяющую 

распределение данных на части. Так, 99%-квантиль означает, что 99% 
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наблюдаемых значений находятся ниже установленного порога, а оставшиеся 1% 

могут рассматриваться как потенциальные отклонения от нормы. 

Применение квантильного анализа при оценке пропускной способности 

газопроводов позволяет установить границы устойчивого функционирования 

сети. В случаях, когда фактический поток газа выходит за пределы этих границ, но 

при этом остаётся в пределах расчётных параметров, такие ситуации требуют 

дополнительной проверки и анализа причин отклонений. 

Использование квантильного подхода в сочетании с методами анализа 

временных рядов и графовыми алгоритмами повышает точность идентификации 

аномалий и усиливает контроль за эксплуатационными характеристиками 

газотранспортной системы. Такой интегрированный подход способствует раннему 

выявлению потенциальных неисправностей, повышает надёжность 

функционирования ГТС и способствует оптимизации управления процессами 

транспортировки газа. 

Для проверки эффективности метода квантильного анализа был использован 

набор данных, в котором отсутствуют аномалии. Полученные результаты 

идентификации отклонений с использованием данного подхода представлены на 

рисунке 15. 

 

Рисунок 15. Результаты работы квантильного метода детекции аномалий 
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В ходе детального анализа установлено, что метод корректно выделил ряд 

аномально высоких значений расхода газа в периоды тестовых испытаний на КС, 

связанных с работой оборудования в сверхпроектных режимах. Испытания 

проводились в период с 22.03.2021 по 03.04.2021, в течение которого в течение 7 

дней расход газа превышал проектное значение на 1%. Несмотря на то, что в 

выборке изначально отсутствовали задокументированные аномалии, 

ретроспективный анализ оперативной информации подтвердил наличие 

технологических причин для зафиксированных отклонений. Такие 

сверхпроектные режимы, по своей сути, представляют собой ненормальное 

состояние функционирования компрессорной станции и могут быть обоснованно 

отнесены к технологическим аномалиям. Идентификация этих режимов на фоне 

«чистых» данных, в которых они не были заранее отмечены, свидетельствует о 

способности метода квантильного анализа выявлять не только очевидные, но и 

скрытые отклонения. Это особенно ценно для задач мониторинга в реальном 

времени. Тем самым, в отличие от ранее описанных ложных срабатываний, 

данный результат подтверждает применимость метода при наличии учёта 

контекста и ретроспективных данных. 

 

2.2. Контекстные и интеллектуальные методы повышения достоверности 

данных в газотранспортных системах 

2.2.1. Интерполяционные методы восстановления аномальных и 

пропущенных данных в газотранспортных системах 

В процессе решения задачи коррекции аномальных значений и заполнения 

пропусков в технологических временных рядах газотранспортной системы 

обоснованным является использование методов контекстного горизонтального и 

вертикального анализа данных. 

Горизонтальный анализ основан на выявлении взаимосвязей между 

различными показателями в пределах одного и того же временного среза. В случае 

обнаружения аномального значения показателя, например содержания азота в 

природном газе, целесообразно провести контекстный анализ других 
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компонентного состава, таких как метан, этан, пропан и др. При условии 

соответствия концентраций сопутствующих компонентов ожидаемым значениям, 

возможна коррекция аномального показателя на основе установленных 

стандартных соотношений между компонентами природного газа. В случае 

отсутствия данных по отдельным компонентам используются методы 

интерполяции для их восстановления с последующим применением 

коррекционных расчетов. Данный подход относится к классу интерполяционных 

методов восстановления данных, основанных на анализе взаимосвязанных 

показателей в рамках одного временного интервала, без привлечения данных 

предыдущих или последующих моментов времени. 

Применение горизонтального анализа требует высокой квалификации 

специалиста, осуществляющего корректировку, а также глубокого понимания 

процессов транспортировки газа и закономерностей изменения его химического 

состава. 

Вертикальный анализ опирается на пространственные взаимосвязи между 

показателями, измеряемыми в различных узлах газотранспортной сети. Для 

коррекции данных используется информация с газоизмерительных станций, 

расположенных последовательно вдоль потока газа. Например, при наличии 

аномального значения содержания азота на станции B, корректировка 

производится с учётом данных с предыдущей станции A и следующей станции C, 

а также характеристик потока между ними, таких как скорость и объём газа. 

Прогнозирование ожидаемого значения параметра осуществляется на основе 

физических законов транспортировки и известной динамики состава газа вдоль 

маршрута движения. 

Полученные прогнозные значения позволяют скорректировать аномальные 

измерения или заполнить пропуски в данных, повышая их достоверность. При 

применении вертикального анализа необходимо учитывать потенциальные 

внешние воздействия и изменчивость показателей транспортировки газа, которые 

могут влиять на динамику компонентного состава. 
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Использование сочетания методов горизонтального и вертикального 

анализа позволяет повысить качество данных технологического мониторинга, 

минимизировать ошибки в расчетах и повысить надёжность моделей 

прогнозирования и оптимизации режимов работы газотранспортных систем. 

2.2.2. Концептуальная архитектура модуля детекции и корректировки 

аномалий в МАСДУ ЕСГ 

МАСДУ ЕСГ представляет собой центральное звено системы 

диспетчерского управления ЕСГ. Каждый показатель, поступающий из SCADA-

систем нижнего уровня или вычисляемый на любом уровне управления, имеет 

уникальный постоянный идентификатор (GUID) в подсистеме хранения МАСДУ. 

Для внедрения в МАСДУ ЕСГ модуля детекции аномалий во временных рядах 

необходимо выполнить структурный анализ этих идентификаторов и выделить 

ключевые показатели, логически взаимосвязанные между собой. Основная 

функция модуля заключается в мониторинге таких взаимозависимых параметров 

и фиксации отклонений между ними. При превышении установленного порога 

расхождения, заданного оператором или определённого статистическим методом, 

система должна формировать сигнал о возможном поступлении в хранилище 

аномальных либо недостоверных данных. 

Для повышения качества анализа данных целесообразно дополнить 

подсистему хранения МАСДУ ЕСГ параметром, отражающим степень 

достоверности каждого поступающего или вычисленного значения. В случае 

выявления аномальных данных или низкой достоверности система должна 

предоставлять оператору или диспетчеру возможность ручной проверки 

информации. 

В дальнейшем накопленные данные о ручных проверках операторов могут 

быть использованы для обучения классификационной нейронной сети. Ответы 

диспетчеров (TRUE или FALSE) на аномалии, выявленные модулем, фиксируются 

и служат обучающей выборкой. При повторном обнаружении схожих или 

идентичных аномалий информация передаётся в модуль автоматической 

верификации для подтверждения или опровержения состояния. Таким образом, 
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классификационная нейронная сеть будет постепенно обучаться с участием 

операторов, повышая точность классификации. Метрики Precision и Recall, 

рассчитанные на основе сопоставления ответов нейросети с решениями 

операторов, могут быть использованы для автоматического определения степени 

достоверности выявленных аномалий, что позволит повысить эффективность 

системы и снизить нагрузку на диспетчерский персонал. 

Схема прототипа модуля детекции и коррекции аномалий представлена на 

рисунке 16. 

 

 

Рисунок 16. Концептуальная схема модуля детекции и коррекции аномалий 

 

Модуль детекции и корректировки аномалий в МАСДУ ЕСГ предназначен 

для повышения достоверности данных, используемых в системе управления 

газотранспортной сетью. Его работа строится на последовательной проверке 

поступающих показателей и включает несколько этапов контроля. 

1. Первичная проверка данных – поступающая информация с нижних 

уровней управления или систем сбора проходит каскад базовых проверок. На этом 

этапе контролируются допустимые диапазоны единиц измерения, границы 

значений параметров и квантильные значения для каждого уникального 

идентификатора (GUID). 

2. Формирование доверительного значения – каждому показателю 

присваивается уровень доверия. Если значение параметра соответствует 

допустимому диапазону, оно передается на следующий этап проверки. В случае 
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выявления отклонений показатель направляется в нейронную сеть для 

углубленного анализа. 

3. Дополнительная проверка с использованием нейронной сети – 

искусственная нейронная сеть анализирует поступивший показатель и оценивает 

его достоверность, сравнивая с историческими данными и статистическими 

закономерностями. Уровень доверия, установленный нейросетью, также 

регулируется оператором в зависимости от критичности параметра. При 

положительном результате показатель передается в систему хранения, в 

противном случае – в блок ручной проверки. 

4. Ручная проверка оператором ЦПДД – при недостаточной уверенности 

в корректности данных показатель анализируется диспетчером или оператором 

ЦПДД. Оператор принимает окончательное решение о передаче данных в систему 

хранения либо об их корректировке перед внесением в базу. 

Разработанный модуль детекции и корректировки данных является 

критически важным элементом системы управления ЕСГ. Он минимизирует риски 

использования некорректных данных, что позволяет повысить точность расчетов 

топливно-энергетических затрат, оптимизировать режимы работы КС и снизить 

издержки на транспортировку газа. Предложенная система принципиально 

отличается от известных методов тем, что отвечает более широкому кругу 

практических ситуаций и уменьшает число ложных срабатываний. Коррекция 

аномальных и ошибочных данных способствует улучшению оперативности и 

обоснованности принятия управленческих и диспетчерских решений, что важно 

для экономической устойчивости газотранспортной отрасли. Автоматизация 

процесса выявления аномалий также снижает нагрузку на диспетчерский 

персонал, повышая эффективность оперативного управления системой. 

2.2.3. Оценка экономического эффекта модуля детекции аномалий 

Для экономической оценки работы модуля детекции и корректировки 

данных впервые разработан интегральный показатель статистико-экономического 

эффекта – Anomaly Impact Value Index (AIVI). Показатель отражает суммарный 

стоимостной результат функционирования системы и отличается от аналогов тем, 
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что учитывает не только предотвращённые убытки и достигнутые экономические 

выгоды за счёт корректной детекции, но и финансовые последствия ложных 

тревог. 

Следует учитывать, что не все режимно-технологические и балансовые 

характеристики газотранспортной системы оказывают влияние на финансовые 

результаты. Для корректного функционирования интегрального показателя AIVI 

требуется предварительная систематизация и классификация контрольных 

параметров системы газоснабжения, оказывающих влияние на стоимостные 

результаты. 

Математически AIVI определяется следующим образом (формула 24): 

𝐴𝐼𝑉𝐼 =
1

𝑛
(∑ ε𝑖

𝑇𝑃

𝑛

𝑖=1

− ∑ ε𝑗
𝐹𝑃

𝑚

𝑗=1

) (24) 

где n – количество корректно выявленных аномалий (True Positives); m – 

количество ложных срабатываний (False Positives); εi
TP – стоимостной эффект от i-

й верной детекции; εj
FP – стоимостной эффект от j-й ложной тревоги (может быть 

как отрицательным, так и положительным). 

Каждое значение ε формируется как сумма трёх составляющих, 

отражающих ключевые источники стоимостных последствий в процессе 

транспортировки газа: 

1. Отклонение по расходу газа (формула 25): 

ε(1) = Δ𝑄 ⋅ 𝐶 = (𝑄учет − 𝑄факт) ⋅ 𝐶 (25) 

где ΔQ – разница между фактическим и зафиксированным объёмом газа; C – 

стоимость одного кубического метра газа. Применимо ко всем потребителям. 

2. Отклонение по калорийности (только для промышленных потребителей) 

определяется по формуле 26: 

ε(2) = (κ − 1) ⋅ 𝑃 ⋅ 𝐶,  κ =
𝐻перед

𝐻факт
 (26) 

где Hфакт, Hперед – фактическая и переданная калорийность газа; P – объём 

поставки. 
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3. Штрафы за несоблюдение контрактных показателей качества газа 

определяются по формуле (27): 

ε(3) = {
β ⋅ 𝑃,  если  𝑥реал  >  𝑥порог 

0,  иначе
 27 

где xреал – фактическое значение контролируемого показателя (например, 

содержание сероводорода); xпорог – контрактный предел; β – ставка штрафа за 1 

м³. 

Итоговое стоимостное выражение для каждого события определяется по 

формуле 28: 

ε = ε(1) + ε(2) − ε(3) 28 

Нормализация общей стоимостной величины по количеству корректных 

срабатываний n позволяет интерпретировать AIVI как средний экономический 

эффект одной верной детекции. Это обеспечивает количественную оценку KPI 

модуля детекции; сопоставимость алгоритмов в условиях разной 

чувствительности и частоты срабатываний; экономически корректную 

интерпретацию при внедрении в производственные SCADA-системы: «сколько 

приносит одна правильная сработка, с учётом всех ложных?». 

В качестве примера расчета показателя AIVI в исследовании рассмотрено 

влияние ошибки в 1% при определении калорийности природного газа, 

поставляемого на внутреннем рынке промышленным потребителям группой 

компаний ООО «Газпром межрегионгаз» 

По итогам 2023 года группа ООО «Газпром межрегионгаз», подразделением 

ПАО «Газпром», ответственным за реализацию природного газа на территории 

Российской Федерации, реализовала 243,9 млрд кубометров природного газа 

(Рисунок 17). Из этого объема более 80% или около 195 млрд кубометров 

пришлось на потребителей, не относящихся к категории «население». Это 

включает промышленные предприятия, энергетический сектор и коммунальные 

службы. 
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Рисунок 17. Структура реализации природного газа в 2023 г. 

 

Согласно бухгалтерской отчетности ООО «Газпром межрегионгаз», выручка 

группы компаний по итогам 2023 года составила 1,185 трлн рублей. На 

официальном сайте ПАО «Газпром» доступна информация о средней цене на газ 

для промышленных потребителей до 2020 года. Аппроксимация тренда изменения 

цены показала, что стоимость газа для промышленных потребителей в 2023 году 

составляет 4,67 рублей за м3. В соответствии с формулой 26: 

ε(2) = (
𝐻факт − 1%

𝐻факт
− 1) ⋅ 195 млрд м3 ⋅ 4, 67 руб./м3  = −9,1 млрд руб. 

Таким образом, при выявлении ошибки измерения фактической 

калорийности природного газа в 1% один из компонентов (ε(2)) показателя AIVI в 

стоимостном выражении будет равен 9,1 млрд рублей в год или 25 млн рублей в 

сутки. 

Для бюджета Российской Федерации выявление подобной ошибки может 

принести дополнительные поступления: 20% от суммы в виде налога на прибыль 

и 20% в виде налога на добавленную стоимость. В абсолютных значениях это 

составит более 3,2 млрд рублей в год. Это является значительным показателем, 

который подчеркивает потенциал внедрения модуля детекции и корректировки 

ошибок и аномалий в промышленную эксплуатацию. 
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2.3. Моделирование и прогнозирование затрат на топливный газа для 

оптимизации его потребления 

После завершения этапов очистки и корректировки входящих данных 

следующим этапом для решения оптимизационной задачи является построение 

моделей зависимости расхода топливного газа на СТН от величины газовых 

потоков в балансовой зоне. Построение таких моделей с использованием методов 

машинного обучения и нейронных сетей позволяет выявить сложные нелинейные 

взаимосвязи, что в дальнейшем служит основой для оптимизации режимов 

функционирования ГТС. Качественно построенные модели обеспечивают 

повышение точности прогнозирования и способствуют экономически 

эффективному управлению затратами на топливно-энергетические ресурсы. 

Как уже упоминалось ранее, вопросы, связанные с моделированием работы 

КС, укрупнённых линейных сегментов газотранспортной сети и оптимизацией 

топливного потребления, являются достаточно хорошо изученными. 

Разнообразные методики и подходы к решению подобных задач широко освещены 

как в отечественной, так и в международной научной литературе. Однако одним 

из основных ограничений большинства существующих решений остаётся 

использование паспортных данных ГПА и участков трубопроводов в качестве 

входной информации, что негативно сказывается на точности создаваемых 

моделей. Этот аспект подробно рассматривается, в частности, в публикации [78]. 

Ряд исследователей предлагает строить индивидуальные модели или 

цифровые двойники для каждого элемента ГТС, включая отдельные КС. Однако 

подобная декомпозиция объектов газотранспортной отрасли на более мелкие 

элементы, как правило, сопровождается увеличением итоговой вычислительной 

погрешности, которая прямо зависит от количества рассматриваемых 

компонентов. 

Кроме того, декомпозиция газотранспортной схемы и разбиение её на 

крупные блоки может привести к искажению результатов расчётов суммарного 

расхода топливного газа на уровне всей системы. В этом случае совокупная 
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абсолютная погрешность определяется с использованием соответствующей 

формулы 29: 

Δtotal =  √∑(∈𝑖∗ 𝑉𝑖)2

𝑛

𝑖=1

 (29) 

где ϵi – относительная погрешность i-го укрупненного участка; Vi – фактический 

или расчетный объем расхода газа i-го укрупненного участка; Δi=ϵi⋅Vi – 

абсолютная погрешность i-го укрупненного участка; Δtotal – совокупная 

абсолютная погрешность всех участков. 

Избыточное разбиение газотранспортной сети на множество линейных 

сегментов способно привести к увеличению расчётной погрешности. Для 

минимизации данного эффекта целесообразно использовать предварительную 

агрегацию данных: вместо анализа каждой отдельной КС или участка 

трубопровода объединять показатели объектов, работающих в схожих 

технологических режимах или относящихся к одной организационной структуре. 

Такой подход позволяет повысить точность моделирования и надёжность 

результатов при сохранении необходимого уровня детализации. 

В связи с этим для реализации таких моделей ЕСГ целесообразно 

разделить на 18 балансовых зон. 

Каждая балансовая зона соответствует географической зоне 

ответственности конкретного газотранспортного предприятия ПАО «Газпром». 

Данный подход позволяет учитывать региональные особенности газопотребления, 

технологические характеристики инфраструктуры и специфику работы КС 

каждого предприятия. Такое разбиение повышает точность моделирования и 

позволяет формировать индивидуальные оптимальные решения по управлению 

расходами топливно-энергетических ресурсов, адаптированные под конкретные 

условия функционирования каждой отдельной зоны. 

В таблице 10 представлено распределение годовых расходов на ТГ по 18 

балансовым зонам ЕСГ ПАО «Газпром». 
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Таблица 10. Расходы на приобретение топливного газа 

№ балансовой 

зоны 

Расход ТГ БЗ, 

тыс. куб. м 

Цена газа, 

руб./тыс. куб. м 

Стоимость 

ТГ, млн руб. 

Доля БЗ, 

% 

1 72 076,15 6 789,0 489,32 0,41 

2 952 092,35 5 529,0 5 264,12 4,39 

3 171 270,93 7 038,0 1 205,40 1,00 

4 1 125 699,00 6 812,0 7 668,26 6,39 

5 363 949,93 6 690,0 2 434,83 2,03 

6 740 398,81 7 184,0 5 319,03 4,43 

7 331 208,02 7 184,0 2 379,40 1,98 

8 1 464,00 7 184,0 10,52 0,01 

9 10 185,00 7 184,0 73,17 0,06 

10 973 160,99 6 499,0 6 324,57 5,27 

11 745 772,48 6 316,0 4 710,30 3,93 

12 350 295,05 6 209,0 2 174,98 1,81 

13 2 498 857,25 5 740,0 14 343,44 11,95 

14 795 778,96 6 118,0 4 868,58 4,06 

15 261 773,28 5 872,0 1 537,13 1,28 

16 11 438 953,80 4 540,0 51 932,85 43,28 

17 1 882 497,64 4 540,0 8 546,54 7,12 

18 117 876,17 6 039,0 711,85 0,59 

ИТОГО 22 833 309,81   119 994,29 100 

 

Проведенный анализ позволяет выделить следующие выводы: 

1. Наибольший объем расхода топливного газа приходится на 

балансовую зону «16» (около 51,9 млрд руб.), что составляет 43,28% от общих 

затрат ПАО «Газпром». Это подчеркивает стратегическую важность данного 

региона для транспортировки газа и указывает на необходимость приоритетного 

внимания к оптимизации затрат именно в этой зоне. 

2. Значительным потребителем топливного газа также является зона 

«13» (почти 2,5 млн тыс. куб. м), где доля затрат составляет примерно 11,95%. 

Данный показатель также подтверждает высокую нагрузку инфраструктуры в 

этом регионе. 

3. Минимальные объемы потребления топливного газа наблюдаются в 

зонах «8» и «9» (менее 0,1%), что свидетельствует о малой нагрузке данных 

участков и их сравнительно невысоком влиянии на общие затраты. 

4. Стоимость газа существенно различается по регионам, достигая 

максимального значения в Краснодарском и Ставропольском краях, республиках 

Чечня и Дагестан (7 184 руб./тыс. куб. м), и минимального – в ХМАО (4 540 
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руб./тыс. куб. м). Таким образом, оптимизация маршрутов транспортировки и 

режимов работы агрегатов в зонах с более высокой ценой на газ может привести к 

значительному экономическому эффекту. 

Общие расходы на топливный газ по всем балансовым зонам составляют 

почти 120 млрд руб. В связи с этим, даже незначительное процентное снижение 

затрат за счет точной настройки прогнозных моделей и оптимизации режимов 

функционирования ГТС способно обеспечить значительный экономический 

эффект в масштабах всей ГТС. 

 

2.3.1. Применение методов кластеризации для повышения точности 

прогнозных моделей в ЕСГ 

В статье [34] было предложено перед построением моделей 

прогнозирования разделить исходные данные на кластеры.  

Кластерный анализ в данном исследовании применялся к состояниям 

балансовой зоны в целом. Каждый элемент выборки, подлежащей кластеризации, 

представляет собой вектор значений параметров, характеризующих систему за 

одни газовые сутки: объёмы входящих и исходящих потоков, потребление, 

изменение запасов газа и другие агрегированные показатели. Целью анализа 

являлась идентификация устойчивых режимов функционирования 

газотранспортной системы – таких как штатная эксплуатация, периоды закачки 

или отбора газа из ПХГ, а также проведение ремонтных работ. 

Полученные кластеры представляют собой однородные группы состояний 

с характерными статистическими свойствами и закономерностями изменения 

потоков. Использование кластерного анализа на предварительном этапе 

моделирования позволило учесть специфику различных эксплуатационных 

состояний системы, а также повысить точность прогнозных моделей за счёт 

адаптации регрессионных связей внутри каждого кластера. 

Однако количество кластеров в статье [34] устанавливалось экспертным 

методом. Для более обоснованного и точного определения оптимального 
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количества кластеров рекомендуется применять статистические методы, такие как 

метод «локтя» или индекс силуэта. 

Апробация применения метода кластеризации с обоснованным 

количеством кластеров была проведена на данных самой крупной балансовой 

зоны «16», которая характеризуется наибольшим расходом топливного газа и 

существенным влиянием на общие затраты ЕСГ. Для обоснованного определения 

оптимального количества кластеров были использованы следующие 

статистические подходы: 

­ Метод «локтя» (Elbow Method). 

­ Метод силуэта (Silhouette Score). 

­ Индекс Дэвиса-Боулдина (Davies-Bouldin Index). 

­ Индекс Калински-Харабаса (Calinski-Harabasz Index). 

Использование этих подходов позволило объективно выбрать количество 

кластеров, обеспечив высокую однородность и устойчивость кластеров для 

дальнейшего построения моделей прогнозирования. 

В таблице 11 представлено изменение значений статистических 

показателей при различном количестве кластеров для объективного выбора 

оптимального числа кластеров для балансовой зоны «16» для дальнейшего 

анализа. 
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Таблица 11. Определение оптимального количества кластеров 

Количество 

кластеров 

Метод 

"локтя" 

(Elbow 

Method) 

Метод 

силуэта 

(Silhouette 

Score) 

Индекс Дэвиса-

Боулдина 

(Davies-Bouldin 

Index) 

Индекс 

Калински-

Харабаса 

(Calinski-

Harabasz 

Index) 

2 81 992,32 0,39 1,03 1 981,77 

3 71 388,39 0,31 1,33 1 658,00 

4 62 771,82 0,36 1,05 1 704,06 

5 60 078,77 0,33 1,23 1 487,61 

6 57 673,25 0,30 1,34 1 339,19 

7 55 988,36 0,30 1,25 1 212,99 

8 53 757,83 0,24 1,45 1 119,83 

9 52 096,23 0,25 1,37 1 074,24 

10 51 132,65 0,24 1,40 996,66 

11 49 327,12 0,25 1,34 954,85 

12 48 740,80 0,24 1,47 911,60 

13 47 086,64 0,25 1,46 892,01 

14 46 374,03 0,24 1,51 855,14 

 

На рисунках 18 представлена визуализация статистических показателей 

 

Рисунок 18. Визуализации выбора оптимального количества кластеров 
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Результаты использования указанных подходов показали следующее: метод 

«локтя» и индекс Дэвиса-Боулдина указывают на оптимальное количество 

кластеров, равное 4. Другие методы формально рекомендуют выбрать 2 кластера, 

однако также демонстрируют локальные экстремумы в точке выбора 4 кластеров. 

На основании анализа всех подходов принято обоснованное решение выбрать 

количество кластеров, равное 4.  

На рисунке 19 представлена визуализация результатов кластеризации 

методом t-SNE (t-distributed Stochastic Neighbor Embedding) с выделением четырёх 

кластеров. Метод t-SNE позволяет отобразить многомерные данные в двумерном 

пространстве таким образом, что близкие по характеристикам точки 

группируются вместе.  

 

Рисунок 19. Визуализация результатов кластеризации методом t-SNE 

 

Полученные кластеры имеют четкие границы и хорошую обособленность, 

подтверждая эффективность и адекватность выбранного количества кластеров для 

последующего анализа и моделирования. 

На рисунке 20 представлено распределение значений расхода топливного 

газа (в тыс. куб. м) в зависимости от порядкового номера газовых суток с 

выделением четырёх кластеров.  
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Рисунок 20. Визуализация работы алгоритма кластеризации 

 

Визуализация позволяет оценить характер и динамику изменений расхода 

газа в течение рассматриваемого периода и подтверждает корректность 

выбранного количества кластеров для дальнейшего построения прогнозных 

моделей. 

В таблице 12 представлены результаты определения оптимального 

количества кластеров и значения статистических показателей для всех 18 

балансовых зон ЕСГ. Для каждой балансовой зоны указаны значения 

статистических критериев: метод «локтя», метод силуэта, индекс Дэвиса-Боулдина 

и индекс Калински-Харабаса, а также обоснованное оптимальное количество 

кластеров, выбранное на основе комплексного анализа этих показателей.  

Далее, после определения оптимального количества кластеров, 

сформирована итоговая выборка данных для последующего моделирования. 

Использование таких выборок позволяет повысить точность моделей 

прогнозирования за счет снижения влияния разнонаправленных тенденций и 

шумов, обусловленных различными эксплуатационными и экономическими 

условиями функционирования ГТС. 
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Таблица 12. Определение оптимального количества кластеров 

№ 

балансовой 

зоны 

Метод 

"локтя" 

(Elbow 

Method) 

Метод 

силуэта 

(Silhouette 

Score) 

Индекс 

Дэвиса-

Боулдина 

(Davies-

Bouldin 

Index) 

Индекс 

Калински-

Харабаса 

(Calinski-

Harabasz 

Index) 

Оптимальное 

количество 

кластеров 

1 51 609 0,71 0,43 9 750 2 

2 66 387 0,60 0,61 5 402 2 

3 105 219 0,36 1,15 1 699 2 

4 54 697 0,36 1,18 1 635 2 

5 39 927 0,25 1,35 468 12 

6 46 080 0,30 1,26 1 103 4 

7 59 875 0,37 1,07 1 716 2 

8 8 403 0,52 0,64 4 057 5 

9 9 639 0,43 0,85 3 109 4 

10 69 638 0,39 1,03 2 103 2 

11 18 030 0,41 0,85 2 015 3 

12 48 980 0,54 0,65 4 597 2 

13 61 670 0,47 0,78 3 437 2 

14 19 491 0,29 1,15 1 099 8 

15 36 143 0,39 1,04 2 024 2 

16 62 772 0,36 1,05 1 704 4 

17 67 576 0,38 1,08 1 851 2 

18 9 507 0,59 0,57 6 111 2 

 

2.3.2. Сравнительный анализ классических и нейросетевых моделей 

прогнозирования расхода топливного газа 

Следующим этапом разработки глобальной оптимизационной модели 

является формирование локальных прогнозных моделей, описывающих 

взаимосвязь между потреблением топливного газа внутри каждой отдельной 

балансовой зоны и объемами входящих и исходящих газовых потоков, а также 

уровнем внутреннего потребления. Построение таких локальных моделей 

направлено на учет региональной специфики и позволяет наиболее точно 

отразить технологические и экономические особенности каждой балансовой 

зоны. 

В работах [34, 37] были представлены методики построения таких моделей. 

В исследовании [34] авторы предложили использовать предварительную 
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кластеризацию данных, что позволило дополнительно повысить точность 

прогнозов. Авторы подчеркнули важность предварительного анализа данных и 

применения современных статистических методов для достижения минимальных 

ошибок прогнозирования. В статье [37] основной акцент сделан на 

преимуществах применения методов машинного обучения по сравнению с 

традиционной линейной регрессией, в частности было установлено, что 

использование нейронных сетей снижает среднюю абсолютную процентную 

ошибку прогнозирования до 4,68%, что подтверждает эффективность подхода.  

Однако в существующих исследованиях выявлены определенные 

недостатки. Например, в статье [34] количество кластеров было определено 

экспертно, без применения статистических подходов. Несмотря на то, что авторы 

достигли снижения ошибки прогнозирования, отсутствие формализованного 

подхода к определению количества кластеров ограничивает воспроизводимость и 

адаптивность предложенного метода. 

В статье [37] моделирование осуществлялось на данных последних 400 

газовых суток без учета принадлежности данных к конкретным кластерам, что 

ограничивает универсальность и применимость данного подхода ко всем 

балансовым зонам ЕСГ. Такой подход не позволяет адекватно учитывать 

специфику различных периодов и структурные изменения, что существенно 

снижает точность прогнозов в более сложных и разнородных условиях 

эксплуатации. Кроме того, обучение нейронной сети в указанном исследовании 

проводилось на всей имеющейся выборке данных без выделения отдельного 

тестового набора для оценки качества моделей. Подобный подход снижает 

объективность оценки точности и стабильности построенных моделей и может 

привести к завышению их прогнозных способностей при реальной эксплуатации. 

В таблице 13 представлены результаты тестирования различных моделей 

машинного обучения (Linear Regression, KNeighbors Regressor, GradientBoosting 

Regressor, RandomForest Regressor), которые были применены для расчета расхода 

топливного газа балансовой зоны «16». Для каждой модели приведены 

оптимальные параметры и результаты оценки их точности с использованием 



99 
 

метрики средней абсолютной ошибки, что позволяет выявить наиболее 

эффективные методы прогнозирования и рекомендовать их к практическому 

применению при решении задач оптимизации топливно-энергетических затрат 

ГТС. 

 

Таблица 13. Значение оптимальных параметров и МАЕ моделей машинного 

обучения 

Модель регрессии Параметры Значение МАЕ 

Linear Regression  {}  1022,16 

KNeighbors Regressor  {'n_neighbors': 3}  855,298 

GradientBoosting 

Regressor 
{'learning_rate': 0,1; 'n_estimators': 300}  

990,291 

RandomForest Regressor  {'max_depth': None; 'n_estimators': 200}  853,769 

CatBoost Regressor {'iterations': 500; 'learning_rate': 0,1}  921,733 

 

Анализ результатов позволяет сделать несколько выводов о применимости 

и точности различных моделей машинного обучения для задачи прогнозирования 

расхода топливного газа в балансовой зоне «16». Наилучшие результаты 

продемонстрировала модель RandomForest Regressor с показателем MAE, равным 

853,769, что указывает на её высокую способность учитывать нелинейные 

взаимосвязи и неоднородность исходных данных. Модель GradientBoosting 

Regressor (MAE = 990,291) и Linear Regression (MAE = 1022,16) показали менее 

точные прогнозы. Линейная регрессия имеет самую высокую ошибку среди всех 

исследованных моделей, что говорит о недостаточной способности линейных 

моделей описывать сложные зависимости между показателями газовых потоков и 

расходом топливного газа. Наиболее предпочтительными для решения 

поставленной задачи следует признать RandomForest Regressor и KNeighbors 

Regressor, поскольку они показали наименьшую ошибку прогнозирования и 

наилучшую способность адаптироваться к сложным и нелинейным структурам 

исходных данных. 

Результаты тестирования моделей остальных балансовых зон приведены в 

таблице 14. 
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Таблица 14. Результаты тестирования моделей машинного обучения 

№ 

балансовой 

зоны 

Модель регрессии, значение МАЕ Лучшая 

регрессионная 

модель 
Linear KNeighbors 

Gradient 

Boosting 

Random 

Forest 
CatBoost 

1 677,15 510,62 605,70 557,78 514,21 Kneighbors 

2 985,43 713,96 789,10 677,54 708,70 Random Forest 

3 510,15 505,22 466,91 484,29 451,03 CatBoost 

4 338,47 353,72 344,53 349,22 324,93 CatBoost 

5 116,68 73,09 86,08 74,00 95,85 Kneighbors 

6 104,78 77,00 89,80 78,66 73,61 CatBoost 

7 402,48 400,73 380,49 357,34 346,11 CatBoost 

8 1,25 0,52 0,98 0,97 0,75 Kneighbors 

9 30,08 25,20 26,05 25,08 26,74 Random Forest 

10 361,38 332,56 346,59 341,95 330,54 CatBoost 

11 312,98 255,57 253,85 242,22 250,67 Random Forest 

12 182,47 146,61 144,11 139,68 144,87 Random Forest 

13 905,37 830,95 811,76 772,03 798,15 Random Forest 

14 232,89 228,38 190,28 223,20 190,02 CatBoost 

15 510,64 469,42 489,34 484,31 457,93 CatBoost 

16 1 022,16 855,30 990,29 853,77 921,73 Random Forest 

17 548,35 335,96 423,42 433,43 422,77 Kneighbors 

18 324,04 313,23 316,71 320,71 315,24 Kneighbors 

 

На основе анализа данных, представленных в таблице, можно сделать 

следующие выводы. В большинстве балансовых зон лучшую точность 

прогнозирования расхода топливного газа продемонстрировала регрессионная 

модель CatBoost (8 из 18 зон), которая стабильно показывает низкие значения 

МАЕ, что свидетельствует о её высокой способности учитывать специфику 

данных различных зон. Полученные результаты позволяют рекомендовать 

использование моделей CatBoost и Random Forest для решения задач 

прогнозирования расхода топливного газа в большинстве балансовых зон ЕСГ, 

учитывая их способность эффективно адаптироваться к особенностям 

технологических и экономических условий конкретных регионов. 

В статье [37] был сделан вывод о перспективности применения нейронных 

сетей для прогнозирования расхода топливного газа. В диссертационном 

исследовании для дополнительной проверки этого утверждения были 

разработаны и протестированы две нейронные сети с различными архитектурами, 
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результаты которых представлены в таблицах (таблицы 15, 16). Первая 

представляла собой стандартную полносвязную структуру, во второй модели 

использовался свёрточный слой (CNN), способный эффективнее учитывать 

временные зависимости и нелинейные закономерности входных данных. Для 

обучения моделей нейронных сетей использовались данные балансовой зоны 

«16», предварительно разбитые по выделенным ранее кластерам. 

Таблица 15. Архитектура нейронной сети с полносвязанными слоями 

Слой (тип слоя) Выходная размерность 

Dense_1 (Dense)  (None, 128) 

batch_normalization  (None, 128) 

dropout (Dropout) (None, 128) 

dense_2 (Dense)  (None, 64) 

batch_normalization_1  (None, 64) 

dense_2 (Dense)  (None, 32) 

batch_normalization_1  (None, 32) 

dropout_1_ (Dropout) (None, 32) 

dense_4 (Dense) (None, 1) 

 

Таблица 16. Архитектура нейронной сети со свёрточным слоем 

Слой (тип слоя) Выходная размерность 

conv1d_1 (Conv1D)  (None, 48, 32) 

flatten_1 (Flatten) (None, 1536) 

batch_normalization  (None, 1536) 

dropout (Dropout) (None, 1536) 

dense_2 (Dense)  (None, 64) 

batch_normalization_1  (None, 64) 

dense_2 (Dense)  (None, 32) 

batch_normalization_1  (None, 32) 

dropout_1_ (Dropout) (None, 32) 

dense_4 (Dense) (None, 1) 

 

График обучение нейронной сети со свёрточным слоем (вторая 

архитектура) приведен на рисунке 21. 
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Рисунок 21. Динамика обучения нейронной сети 

 

Результаты тестирования лучшей модели ML и моделей на базе нейронных 

сетей приведены в таблице 17. 

Таблица 17. Сравнение значений МАРЕ прогнозных моделей 

№ балансовой 

зоны 

Модель, значение МАЕ 

ML (лучшая) NN (Dense) NN (Conv1D) 

1 510,62 508,18 499,12 

2 677,54 660,44 661,39 

3 451,03 425,52 403,62 

4 324,93 297,44 282,21 

5 73,09 76,83 69,52 

6 73,61 84,78 70,67 

7 346,11 350,57 351,08 

8 0,52 0,45 0,52 

9 25,08 7,76 7,47 

10 330,54 276,30 270,74 

11 242,22 267,32 242,37 

12 139,68 119,67 95,98 

13 772,03 745,40 745,96 

14 190,02 144,77 164,83 

15 457,93 374,18 377,99 

16 853,77 810,24 753,68 

17 335,96 372,01 392,85 

18 313,23 276,24 288,11 
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Анализ представленной таблицы позволяет сделать вывод, что нейронные 

сети в большинстве случаев демонстрируют более высокую точность 

прогнозирования расхода топливного газа по сравнению с классическими 

моделями машинного обучения. При этом нейронная сеть со сверточным 

подходом (CNN, Convolutional Neural Network) демонстрирует лучшие показатели 

точности в подавляющем большинстве случаев. Гипотеза о том, что применение 

нейронных сетей, особенно сверточных, предпочтительнее классических 

регрессионных моделей для задачи прогнозирования расхода топливного газа 

получила свое подтверждение. 

 

2.3.3. Тестирование и оценка качества прогнозных нейросетевых моделей 

Следующим этапом исследования является тестирование и оценка качества 

построенных моделей прогнозирования на основе нейронных сетей. Поскольку 

для таких моделей традиционные статистические критерии (например, 

статистические тесты Стьюдента или F-тесты, предназначенные для классических 

регрессионных моделей) мало применимы ввиду их нелинейного характера и 

сложности интерпретации внутренних взаимосвязей, был использован комплекс 

современных методов оценки точности и надежности моделей. В частности, для 

оценки качества прогноза были применены метрики MAPE, MAE и коэффициент 

детерминации (R²). Для проверки устойчивости моделей использована процедура 

5-кратной перекрестной проверки (5-fold cross-validation), позволяющая 

объективно оценить обобщающую способность моделей на независимых 

выборках данных. Кроме того, для интерпретации и оценки вклада отдельных 

факторов и параметров в итоговый результат прогноза применялся метод SHAP 

(SHapley Additive exPlanations), позволяющий выявить важность признаков и 

обеспечить прозрачность решений, принимаемых нейронными сетями. 

В качестве примера для проведения тестирования и анализа качества 

разработанных моделей были использованы данные балансовой зоны «16», 

выбранные по аналогии с предыдущими разделами работы. 
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На рисунке 22 изображено распределение значений SHAP (SHapley Additive 

exPlanations), характеризующее степень влияния каждого из признаков (features) 

на результат работы нейронной сети, прогнозирующей расход топливного газа в 

балансовой зоне «16». 

 

Рисунок 22. Распределение значений SHAP прогнозной модели 

 

Цветовая шкала отражает величину значений признаков: красным 

обозначены высокие, а синим – низкие значения. Показатели, расположенные в 

верхней части графика (например, Признак 29, Признак 31 и Признак 28), 

оказывают наиболее значительное влияние на итоговый прогноз модели, 

поскольку для них наблюдается наибольшее отклонение значений SHAP от нуля. 

Представленный анализ подтверждает, что отдельные входные параметры 
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оказывают существенное и неоднородное влияние на прогнозируемый показатель, 

что необходимо учитывать при дальнейшей разработке и оптимизации модели. 

Значение коэффициента детерминации (R²), полученное при тестировании 

нейронной сети на данных балансовой зоны «16», составило 0,9558, что 

свидетельствует о высокой точности модели и её способности объяснять 

значительную часть изменчивости исходных данных. 

MAPE, полученная в результате тестирования нейронной сети, составила 

2,64%, что характеризует высокую точность и надежность разработанной модели 

прогнозирования расхода топливного газа. Значение MAPE менее 3% 

подтверждает практическую пригодность модели для оперативного и 

стратегического планирования режимов работы ГТС, а также подчеркивает 

экономическую эффективность предложенного подхода. 

Результаты проведенной 5-кратной перекрестной проверки на данных 

балансовой зоны «16» подтвердили стабильность и устойчивость разработанной 

нейронной сети. Среднее значение среднеквадратичной ошибки (MSE) составило 

23 759 712 при стандартном отклонении 3 193 053, при этом отношение 

стандартного отклонения к среднему значению ошибки равно 0,13. Такие 

показатели говорят о низкой вариативности ошибки и высокой надежности 

модели. 

На рисунке 23 изображено сравнение реальных значений расхода 

топливного газа с прогнозами, полученными с помощью нейронной сети. 

  

Рисунок 23. Оценка качества работы прогнозной модели 
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Первый график демонстрирует высокую степень совпадения рассчитанных 

и фактических значений расхода газа по дням, что свидетельствует о высокой 

точности и адекватности модели. Второй рисунок представляет собой график 

корреляции между прогнозными и фактическими значениями, где точки близко 

располагаются вдоль биссектрисы, что дополнительно подтверждает высокую 

точность и надежность предложенной нейронной сети. 

Результаты тестирования моделей остальных балансовых зон представлены 

в таблице 18. 

 

Таблица 18. Результаты тестирования моделей 

№ БЗ R² MAPE 

Кросс-валидация 

Средний 

MSE 

Стандартное 

отклонение 
Отношение 

1 0,245 28,97% 1 621 679 487 087 0,30 

2 0,892 10,60% 11 027 983 2 023 823 0,18 

3 0,847 14,84% 2 322 204 243 719 0,10 

4 0,907 4,78% 1 433 884 41 991 0,03 

5 0,944 2,72% 311 933 136 286 0,44 

6 0,982 2,35% 533 666 35 535 0,07 

7 0,505 27,31% 707 775 109 209 0,15 

8 0,999 0,82% 11 7 0,63 

9 0,907 17,86% 28 555 9 190 0,32 

10 0,785 6,15% 831 529 222 488 0,27 

11 0,580 7,21% 402 274 84 336 0,21 

12 0,897 8,07% 223 864 84 879 0,38 

13 0,874 7,09% 6 240 546 2 054 256 0,33 

14 -0,098 5,51% 427 464 236 240 0,55 

15 0,284 21,77% 1 132 854 280 467 0,25 

16 0,956 2,64% 23 759 712 3 193 053 0,13 

17 0,984 5,58% 9 135 637 422 398 0,05 

18 -0,269 67,53% 335 246 72 884 0,22 

 

На основе проведенного анализа таблицы можно сделать следующие 

выводы: 

В отдельных случаях (например, для зон №14 и №18) наблюдаются 

отрицательные значения коэффициента детерминации R2, что формально 

указывает на худшую точность по сравнению с наивной моделью. Отрицательные 

значения коэффициента детерминации возможны при малом разбросе 
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наблюдаемых значений, когда ошибка даже незначительного отклонения 

воспринимается как ухудшение модели. В таких случаях более информативными 

являются показатели средней и относительной ошибок (MAE, MAPE), которые 

демонстрируют корректность построенной модели. Поэтому отрицательное 

значение R2 в данных условиях не свидетельствует о её неработоспособности. 

Высокое качество прогнозных моделей (характеризуемое высоким 

значением коэффициента детерминации R² и низким значением MAPE 

наблюдается для балансовых зон № 2, 4, 5, 16 . Эти зоны в сумме охватывают 

82,30% от общего расхода топливного газа, что подтверждает значительную 

практическую значимость построенных для них моделей и возможность их 

использования для принятия управленческих решений. 

Балансовые зоны с низким качеством моделей (такие как №14 и №15) 

характеризуются низкими значениями коэффициента детерминации (R²), что 

может свидетельствовать о необходимости дополнительного анализа данных и 

подбора других подходов или улучшения исходных данных для моделирования. 

На эти зоны приходится 12,25% общего расхода топливного газа ЕСГ, что не 

является критической долей, но модели прогнозирования можно попытаться 

улучшить в процессе дальнейших исследований. 

Однако следует учитывать, что: балансовая зона №18 является тупиковой и 

не участвует в расчётных процедурах, её показатели приведены для полноты 

анализа; для зоны №14 при отрицательном значении R2 наблюдается низкое 

значение ошибки MAPE (5,51 %), что указывает на высокую точность прогноза. 

При этом общий уровень точности построенных моделей по всем 

балансовым зонам ЕСГ (MAPE = 5,8%) можно оценить, как очень высокий, что 

подтверждает эффективность предложенного подхода и возможность его 

успешного применения для экономически обоснованного управления и 

оптимизации режимов работы ГТС. 
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2.3.4. Оценка экономической эффективности прогнозных моделей ГТС 

Точное прогнозирование расхода топливного газа в балансовой зоне на КС 

позволяет эффективно распределять нагрузку между агрегатами, выбирая режимы 

работы, при которых общий расход топлива оптимален. При отсутствии точных 

расчетов станции могут работать с неоптимальными нагрузками, что приводит к 

избыточному расходу газа, снижению КПД и увеличению эксплуатационных 

затрат. Кроме того, точные модели позволяют минимизировать технические 

потери, исключить холостой ход агрегатов и избежать перегрузки отдельных 

станций. Это снижает потери на компримирование, уменьшает вероятность 

работы компрессоров в нештатных режимах и позволяет поддерживать 

стабильные характеристики ГТС. 

Кроме того, точное прогнозирование помогает уменьшить частоту 

включений и отключений ГПА, что снижает износ оборудования и продлевает его 

срок службы. Оптимальное распределение нагрузки снижает затраты на 

техническое обслуживание и предотвращает внеплановые ремонты, повышая 

общую надежность системы. 

Для расчета экономии топливного газа при использовании прогнозных 

моделей принято допущение, что в отдельные газовые сутки КС в балансовой зоне 

работали в неоптимальном режиме, приводя к перерасходу топлива. 

Идентификация таких суток проводилась на основе превышения установленного 

порогового значения удельного расхода топлива на прокачку. 

Анализ проводился посредством разбиения значений удельного расхода 

топливного газа на десять интервалов. Суточные наблюдения, попавшие в верхние 

интервалы распределения, рассматривались как потенциальные выбросы, 

указывающие на возможную неоптимальность функционирования системы. 

На рисунке 24 представлена диаграмма рассеяния, иллюстрирующая 

зависимость объёма газа, проходящего через балансовую зону «16», от удельного 

расхода топливного газа. 
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Рисунок 24. Зависимость удельного расхода газа на СТН  

от объема потока газа через ГТО 

Красная линия регрессии показывает общую тенденцию: увеличение 

общего расхода газа через БЗ приводит к росту удельного расхода топлива на его 

транспортировку. 

Для анализа зависимости удельного расхода топливного газа от суммы 

объемов входящих потоков в балансовой зоне были апробированы различные 

типы регрессионных моделей – линейная, экспоненциальная, логарифмическая и 

степенная. Полученные значения коэффициента детерминации (R²) варьируются 

от 0,7029 до 0,7362, что свидетельствует о близкой степени объясняющей 

способности всех моделей: линейная (R² = 0,7237), экспоненциальная (R² = 

0,7029), логарифмическая (R² = 0,7362), степенная (R² = 0,7285). Незначительное 

различие в точности между моделями позволяет заключить, что во всех случаях 

наблюдается устойчивая положительная зависимость удельного расхода ТГ от 

суммарных потоков, а форма этой зависимости носит квазилинейный характер. 

Поэтому в целях интерпретируемости и удобства визуального представления 

далее была использована линейная модель, как наиболее простая и достаточная в 

данном контексте. 
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Уравнение регрессии, описывающее линейную зависимость между 

транспортировкой природного газа через балансовую зону и удельным расходом 

на транспортировку 1 тыс. куб. м, а также коэффициент детерминации (R2) 

представлены в формуле 30: 

y = 0,062𝑥 + 0,466, при этом 𝑅2 = 0,724 (30) 

Подобная зависимость косвенно подтверждается и в источнике [6]. Анализ 

взаимосвязи между удельным расходом топливного газа и суммарным 

транспортным потоком выполнен с целью продемонстрировать, что значения 

расхода, типичные для одного интервала, могут считаться аномально высокими в 

другом. 

На следующем этапе исследования произведено разбиение расхода 

топливного газа на десять интервалов в соответствии с удельным расходом 

топлива на СТН балансовой зоны, после чего для каждого интервала рассчитаны 

статистические показатели. Графическое отображение полученных результатов 

представлено на рисунке 25, а соответствующие числовые значения интервалов 

приведены в таблице 19. 

 

Рисунок 25. Статистическая информация результатов разбиения удельного 

расхода топливного газа на 10 интервалов 
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Для каждого из выделенных интервалов был рассчитан адаптивный 

квантиль, определяющий пороговое значение, при превышении которого расход 

топливного газа классифицируется как аномальный. 

Адаптивный квантиль 𝑄𝑝
адапт

рассчитывался по формуле 31: 

𝑝 = 100 −
100

√𝑛
 (31) 

где p – процентный уровень квантиля; n– количество наблюдений в данном 

интервале. 

Для оценки перерасхода топливного газа по интервалам удельного расхода 

принято допущение, что режимы работы КС, при которых расход топлива 

находится внутри диапазона адаптивного квантиля, соответствуют оптимальному 

функционированию оборудования. Напротив, значения, выходящие за пределы 

данного диапазона, интерпретируются как случаи перерасхода топливного газа. 

Сводные данные о суммарном перерасходе за 2 459 газовых суток в 

балансовой зоне «16» представлены в таблице19. 

 

Таблица 19. Статистические показатели разбиения удельного расхода топливного 

газа на 10 интервалов 

Интервал 

удельного 

расхода 

Медиана, 

тыс. куб. 

м 

Количество 

значений 

Адаптивный 

квантиль, % 

Адаптивный 

квантиль, 

тыс. куб. м 

Сумма 

превышений 

адаптивного 

квантиля, 

тыс. куб. м 

(11.713, 13.512] 16569,8 39 83,99 17 271,94 1 788,67 

(13.512, 15.293] 19248,4 106 90,29 21 172,62 8 156,68 

(15.293, 17.074] 22782,3 194 92,82 26 820,73 19 841,80 

(17.074, 18.855] 27582 313 94,35 33 144,60 13 819,19 

(18.855, 20.636] 34182 369 94,79 37 468,00 19 546,83 

(20.636, 22.417] 39989,9 337 94,55 45 950,72 15 598,24 

(22.417, 24.199] 45859,5 552 95,74 50 363,15 10 391,42 

(24.199, 25.98] 50168,6 418 95,11 53 477,32 15 312,77 

(25.98, 27.761] 52142,5 113 90,59 56 038,93 8 070,79 

(27.761, 29.542] 54736,3 18 76,43 55 840,58 16 390,61 

ИТОГО   2 459     128 916,99 
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В результате расчётов установлено, что за 2 459 газовых суток перерасход 

топливного газа составил 128,92 млн м³, что эквивалентно 0,14 % от общего 

объёма потреблённого топливного газа. 

Стоимость перерасхода топливного газа по всем балансовым зонам (БЗ) 

приведена в таблице 20. 

Таблица 20. Стоимость перерасхода топливного газа 

№ 

балансовой 

зоны 

Стоимость ТГ, млн 

руб. 

Перерасход 

топливного 

газа, % 

Перерасход 

топливного 

газа, млн. руб. 

1 489,32 0,41 2,02 

2 5 264,12 0,34 17,74 

3 1 205,40 0,57 6,90 

4 7 668,26 0,33 25,61 

5 2 434,83 0,50 12,17 

6 5 319,03 0,29 15,64 

7 2 379,40 0,57 13,66 

8 10,52 5,47 0,58 

9 73,17 38,71 - 

10 6 324,57 0,25 15,81 

11 4 710,30 0,18 8,50 

12 2 174,98 0,30 6,59 

13 14 343,44 0,15 21,49 

14 4 868,58 0,25 11,95 

15 1 537,13 0,95 14,64 

16 51 932,85 0,14 70,75 

17 8 546,54 0,29 24,42 

18 711,85 2,32 16,53 

ИТОГО 119 994,29 0,24 285,01 

 

По балансовой зоне «9» зафиксирован перерасход топливного газа на 

уровне около 40%, что указывает на возможные грубые искажения в данных, 

поступающих в подсистему хранения. В связи с этим балансовая зона «9» была 

исключена из дальнейшего анализа. Кроме того, её доля в общем расходе 

топливного газа составляет всего 0,06% и не оказывает существенного влияния на 

итоговые расчёты. 

Оценка экономической эффективности проектов ПАО «Газпром» 

выполняется в соответствии с действующими методическими документами [2, 4, 

11]. Согласно положениям [11], основными результатами реализации проекта 

являются коммерческий и ресурсный эффекты. В этой связи анализ 
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экономической эффективности осуществлялся с учётом следующих предпосылок 

и ограничений: 

­ Расчетный период охватывает 5 лет. 

­ Оценка основана на сравнении сценариев «без проекта» и «с 

проектом», то есть эффективность определяется путем анализа различий в 

денежных потоках при внедрении оптимизационных мероприятий по сравнению с 

ситуацией, при которой такие меры не были бы реализованы. 

Для выполнения расчетов экономической эффективности 

оптимизационных мероприятий были приняты следующие базовые параметры: 

­ Горизонт анализа охватывает период 2025–2029 годов (5 лет). 

­ Валюта расчетов – российский рубль. 

­ Дисконтирование денежных потоков осуществляется по состоянию на 

01.01.2025. 

Чистый доход (ЧД) определяется по следующей формуле 32: 

ЧД = ∑ ДП(𝑡)

𝑇𝑁

𝑡=𝑇н

 (32) 

где ЧД – чистый доход, млн руб.; ДП(𝑡) – денежный поток в году t, млн руб.; 𝑡 – 

индекс расчетного периода (Тн; ТN). 

Чистый дисконтированный доход (ЧДД) рассчитывается по следующей 

формуле 33: 

ЧДД = ∑ ДП(𝑡)

𝑇𝑁

𝑡=𝑇н

∗ Кд(𝑡) (33) 

где ЧДД – чистый дисконтированный доход, млн руб.; ДП(𝑡) – денежный поток в 

году t, млн руб.; Кд(𝑡) – коэффициент дисконтирования в году t; 𝑡 – индекс 

расчетного периода (Тн; ТN). 

Коэффициент дисконтирования определяется по следующей формуле 34: 

Кд(𝑡) =
1

(1 + 𝑑)𝑡−1−(𝑇год−1)
 (34) 
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где Кд(𝑡) – коэффициент дисконтирования в году t; 𝑑 – ставка дисконтирования, 

%; 𝑇год – расчетный год, в котором коэффициент дисконтирования равен 1; 𝑡 – 

индекс расчетного периода (Тн; ТN). 

Ставка дисконтирования 𝑑 является одним из ключевых параметров проекта 

и устанавливается вручную. В настоящее время в ПАО «Газпром» применяются 

ставки дисконтирования на уровнях 10% или 15%, в зависимости от специфики 

проекта. В рамках данного расчета была использована ставка 12%. 

Для учета динамики изменения цены на газ в Российской федерации 

использовался Прогноз социально-экономического развития Российской 

Федерации на 2025 год и на плановый период 2026 и 2027 годов, подготовленный 

Министерством экономического развития Российской Федерации [172, стр. 24]. 

Кроме того, в соответствии с Исходными условиями для формирования вариантов 

развития экономики в Российской Федерации [171] прогнозируется изменение 

уровня добычи природного газа, что также влияет на денежный поток. На рисунке 

26 показано, что зависимость между добычей природного газа и затратными 

топливного газа на его транспортировку имеет линейной характер.   

 

Рисунок 26. Зависимость расхода топливного газа от уровня добычи 

Расчет экономического эффекта приведен в таблице 21. 
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Таблица 21. Расчет экономического эффекта 

Год 2024 2025 2026 2027 2028 2029 

Денежный поток от 

экономии ТГ в 

базовом году, тыс. руб. 

285 007          

Рост цены на газ,%   10,30 4,30 4,00 4,00  4,00  

Добыча газа, млрд. 

куб. м, базовый год 
668,2 695,4 709,1 729,7     

Рост добычи газа, %   4,07 1,97 2,91 2,98 2,98 

Денежный поток от 

экономии ТГ, тыс. руб. 
  327 168 347 956 372 395 398 844 427 173 

Фактор 

дисконтирования 
  1,000 0,893 0,797 0,712 0,636 

Приведенный 

денежный поток, млн 

руб. 

  327 168 310 675 296 871 283 890 271 476 

ИТОГО, тыс. руб. 1 490 079 

 

Использование точных моделей прогнозирования топливного газа может 

обеспечить значительную экономию, которая в 2025 году составила 327,2 млн 

руб., превысив базовый уровень 2024 года на 14,8%. В последующие годы 

наблюдается устойчивый рост экономического эффекта за счет повышения цен на 

газ и увеличения добычи. К 2029 году денежный поток от экономии достиг 427,17 

млн руб., что на 49,9% выше уровня 2025 года. 

С учетом дисконтирования (ставка 12%) совокупный приведенный 

экономический эффект за 5 лет составил 1 490,2 млн руб. Это подтверждает 

высокую перспективность оптимизационных мероприятий, направленных на 

снижение затрат на топливный газ и повышение эффективности ГТС. 

2.4. Выводы по главе 2 

В главе проведено комплексное исследование методов повышения качества 

технологических и балансовых данных газотранспортной системы (ГТС) с целью 

их последующего использования для экономически эффективного управления 

потоками природного газа. 

Показано, что методы выявления и коррекции аномалий в данных, 

основанные на машинном обучении и нейронных сетях (в частности, алгоритмы 

анализа временных рядов, контекстный горизонтальный и вертикальный анализ), 

обеспечивают более высокую точность и адаптивность по сравнению с 



116 
 

классическими статистическими подходами. Применение данных методов 

позволило повысить достоверность технологической информации, 

минимизировать риски использования ошибочных данных при расчётах 

топливных затрат и управлении режимами работы ГТС. 

Особое внимание уделено разработке концепции модуля детекции и 

корректировки аномалий в рамках М АСДУ ЕСГ. Показано, что внедрение 

предложенного модуля снижает операционные риски и повышает экономическую 

эффективность за счёт раннего выявления отклонений, сокращения издержек на 

транспортировку газа и оптимизации процессов диспетчерского управления. Для 

экономической оценки работы модуля детекции и корректировки данных 

разработан интегральный показатель статистико-экономического эффекта – 

Anomaly Impact Value Index (AIVI). Показатель отражает суммарный стоимостной 

результат функционирования системы: предотвращённые убытки и достигнутые 

экономические выгоды за счёт корректной детекции, а также финансовые 

последствия ложных тревог. 

На основании построенных моделей прогнозирования расхода топливного 

газа, использующих методы машинного обучения, реализована система оценки 

экономического эффекта от оптимизации режимов работы. Проведённый расчёт 

показал, что применение точных прогнозных моделей обеспечивает существенное 

сокращение перерасхода топливного газа: при базовом перерасходе в 0,24 % от 

объёма потребления, за пятилетний период экономический эффект в приведённых 

стоимостях составил 1,49 млрд рублей. 

Результаты главы подтвердили, что использование интеллектуальных 

методов мониторинга, прогнозирования и корректировки данных является 

предпочтительным направлением для повышения экономической эффективности 

эксплуатации газотранспортных систем, способствуя снижению топливно-

энергетических издержек и укреплению финансовой устойчивости отрасли. 

Предложенные нейросетевые модели позволяют существенно повышать качество 

прогнозов по сравнению с традиционными методами, основанными на 

усреднённых характеристиках и паспортных данных.  
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3. МОДЕЛИРОВАНИЕ, ОПТИМИЗАЦИЯ И ЭКОНОМИЧЕСКОЕ 

ОБОСНОВАНИЕ ВНЕДРЕНИЯ СППР 

3.1. Комплексный алгоритм оптимизации потоков газа на основе 

нейросетевых прогнозов и стоимостных критериев  

Для моделирования структуры ГТС в рамках реализации оптимизационных 

алгоритмов в научных исследованиях широко применяются ориентированные 

связные графы. В такой модели вершины представляют основные элементы 

инфраструктуры – компрессорные и газораспределительные станции, а также 

точки подачи и отбора газа. Связи между узлами (рёбра графа) моделируют 

трубопроводы или объединённые транспортные маршруты, для которых задаются 

параметры, такие как пропускная способность, максимально допустимое давление 

и протяжённость. Этот подход позволяет учитывать сложную топологию сети и 

гибко управлять схемами перетока газа с целью снижения экономических затрат и 

повышения надёжности транспортировки. Узлы, через которые осуществляется 

подача газа, рассматриваются как входные, а точки отбора – как выходные 

элементы графа [64]. 

На рисунке 27 представлен укрупненный ориентированный граф, 

отражающий структуру ЕСГ: 
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Рисунок 27. Графовое представление потоков газа в зоне ЕСГ 

Основной задачей формирования графового представления ЕСГ является не 

только создание эффективного первичного алгоритмического инструментария, но 

и достижение измеримого стоимостного результата, ориентированного на 

повышение экономической эффективности функционирования газотранспортной 

системы. Это выражается в сокращении издержек, связанных с избыточным 

потреблением топливного газа, предотвращении экономически значимых ошибок 

в данных, повышении точности краткосрочного планирования и оптимизации 

производственной загрузки объектов инфраструктуры. 

3.1.1. Разработка параметризованной модели эволюционного алгоритма для 

задачи оптимизации газотранспортных потоков 

Применение эволюционного (генетического) алгоритма для решения 

оптимизационных задач в газотранспортной области, его высокая эффективность 

и адаптивность к динамическим условиям описывается в работах[39] и [41]. В 

работе [41] приводится пример применения алгоритма для оптимизации 

газотранспортных потоков по экспортным контрактам при поставке российского 

природного газа в страны Западной Европы. В статье [39] применение 

эволюционного алгоритма было апробировано на транспортировке газа в зоне 

ЕСГ. В настоящем диссертационном исследовании подходы к применению 

эволюционного алгоритма нашли свое дальнейшее совершенствование и 

развитие. 

Для поиска оптимального решения в задаче логистического распределения 

природного газа классический генетический алгоритм требуется адаптировать с 

учетом специфики ГТС. В рамках данной модификации роль хромосомы 

(варианта решения) отводится всей структуре графа, описывающего сеть 

распределения, в то время как отдельный ген соответствует вершине этого графа, 

то есть конкретной балансовой зоне. При этом потоковые взаимосвязи между 

вершинами подчиняются укрупнённой форме балансового уравнения, 

аналогичной первому закону Кирхгофа (формулы 20 - 23), применяемому для 

описания распределения потоков в сетевых системах. 
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Ключевые этапы разработки и функционирования эволюционного 

алгоритма включают в себя следующие шаги: 

1. Настройка гиперпараметров – определяются численные параметры, 

такие как размер популяции, количество поколений, вероятности мутации и 

кроссовера, обеспечивающие базовую конфигурацию алгоритма; 

2. Разработка структуры кандидатов – проектируется представление 

возможных решений задачи в виде хромосом, включая способ кодирования 

параметров и ограничений; 

3. Определение механизмов эволюции – формируются процедуры 

скрещивания и мутации, направленные на генерацию новых решений на основе 

существующих кандидатов; 

4. Задание целевой функции – выбирается метрика, по которой 

производится оценка эффективности каждого кандидата, что определяет 

направление поиска оптимального решения; 

5. Установление условий завершения работы алгоритма – формируются 

критерии останова, такие как достижение стабильности популяции, выполнение 

заданного числа итераций или достижение целевого значения функции 

приспособленности. 

Эти этапы обеспечивают гибкость и адаптивность алгоритма под задачи 

стоимостной оптимизации газотранспортных потоков. 

Как показано в ряде исследований [20, 54], существует широкий спектр 

методов, касающихся выбора численности популяции, типов операторов 

кроссовера и мутаций, а также стратегии отбора лучших решений из поколения в 

поколение. В рамках валидации предложенного подхода к оптимизации 

распределения потоков природного газа была реализована настройка 

генетического алгоритма с использованием значений гиперпараметров, 

приведенных в таблице 22. Параметры эволюционного алгоритма выбраны на 

основе предварительных экспериментов и эвристических рекомендаций, 

типичных для задач аналогичного класса. 

Таблица 22. Гиперпараметры эволюционного оптимизационного алгоритма 



120 
 

Гиперпараметр алгоритма Значение 

Количество балансовых зон / моделей прогнозирования 

расхода топливного газа 

18 

Кандидатов в популяции 100 

Популяций (эпох обучения) 200 

Лучших кандидатов  5 

Скрещенных кандидатов 25 

Кандидатов, содержащих модифицированную хромосому  25 

Кандидатов со случайными хромосомами 45 

 

В таблице 22 приведены основные гиперпараметры, использованные при 

настройке генетического алгоритма, применённого для оптимизации потоков 

природного газа. Эти параметры определяют структуру популяции – её размер, 

количество итераций (эпох), а также механизмы формирования новых решений: 

отбор наилучших, операции скрещивания, мутации и добавление случайно 

сгенерированных особей. Подобранный набор гиперпараметров обеспечивает 

баланс между поиском новых вариантов решений и сохранением наиболее 

результативных, что способствует устойчивой и эффективной сходимости 

алгоритма. 

В формируемом в диссертационном исследовании эволюционном алгоритме 

связь биологических терминов с моделируемой системой устанавливается 

следующим образом: 

– хромосома (геном) соответствует конкретному балансовому значению 

газотранспортного потока; 

– особь (кандидат) – это совокупность хромосом, представляющая один из 

возможных вариантов распределения потоков по Единой системе газоснабжения; 

– популяция – совокупность всех таких кандидатов; 

– фитнес-функцией выступает целевая функция, отражающая стоимостную 

эффективность использования топливного газа. 

Первичная оценка затрат топливного газа на транспортировку природного 

газа по ЕСГ, полученная в рамках работы моделей балансовых зон, 

сформированных и протестированных в предыдущем разделе исследования и 
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фактических стоимостных затрат за период в 1 газовые сутки представлена в 

таблице 23: 

Таблица 23. Сравнение фактических и модельных затрат на топливный газа за 1 

газовые сутки 

Номер 

бал. 

зоны 

Расчетное 

значение СТН, 

руб. 

Фактическое 

значение СТН, 

руб. 

Отклонение, 

руб. 

Отклонение, 

% 

1 6 344 088,00 7 768 041,69 1 423 953,69 18,33 

2 18 793 196,00 17 608 079,13 -1 185 116,87 -6,73 

3 6 359 674,00 5 655 947,94 -703 726,06 -12,44 

4 27 379 762,00 28 051 816,00 672 054,00 2,40 

5 13 186 823,00 13 699 039,41 512 216,41 3,74 

6 18 096 828,00 18 024 957,73 -71 870,27 -0,40 

7 3 054 385,50 2 551 419,15 -502 966,35 -19,71 

8 29 598,58 28 736,00 -862,58 -3,00 

9 6 983,79 0,00 -6 983,79   

10 17 008 280,00 15 855 402,33 -1 152 877,67 -7,27 

11 12 983 648,00 17 146 165,20 4 162 517,20 24,28 

12 4 862 654,00 4 493 248,40 -369 405,60 -8,22 

13 32 217 712,00 30 995 081,60 -1 222 630,40 -3,94 

14 10 634 192,00 13 512 080,20 2 877 888,20 21,30 

15 6 790 831,00 7 034 192,11 243 361,11 3,46 

16 108 944 104,00 109 880 689,30 936 585,30 0,85 

17 17 917 988,00 21 375 055,48 3 457 067,48 16,17 

18 715 549,69 1 325 518,23 609 968,54 46,02 

ИТОГО 305 326 297,56 315 005 469,92 9 679 172,35 3,07 

 

В результате работы моделей прогнозирования стоимость топливного газа 

составила 305,3 млн рублей, тогда как фактическая стоимость достигла 315,0 млн 

рублей. Абсолютное отклонение между расчётным и фактическим значением 

составило 9,68 млн рублей, что соответствует 3,07%. Согласно положениям 

стандарта организации ПАО «Газпром» [3], допустимый уровень погрешности 

при расчётах варьируется в пределах от 5,3% до 10,1%. Такие значения 

объясняются влиянием инструментальных факторов и методологических 

ограничений, отмеченных в источнике [8, табл. 9.1]. Учитывая, что полученное 

отклонение существенно ниже установленного диапазона, его можно признать 

приемлемым. Это подтверждает корректность применённого подхода и высокую 

достоверность разработанных моделей при оценке затрат на топливный газ. 
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Укрупненный алгоритм формирования кандидата представлен на рисунке 

28. 

 

Рисунок 28. Алгоритм формирования кандидата 

 

При моделировании распределения долей использования газотранспортных 

потоков на входе в балансовые зоны (генотип) целесообразно использовать вектор 

случайных величин, обладающий следующими свойствами: 

1. Число элементов вектора должно соответствовать количеству входящих 

потоков в пределах балансовой зоны; 

2. Суммарное значение всех компонентов вектора (весов) должно быть 

равно единице; 

3. Каждая из компонент вектора должна учитывать физически допустимую 

пропускную способность соответствующего направления. 

Наилучшим способом генерации таких векторов является использование 

распределения Дирихле. Оно представляет собой многомерную обобщённую 

форму бета-распределения, которая применяется в теории вероятностей и 

статистике для моделирования векторов вероятностей, отражающих долевое 
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соотношение в рамках общего объема. Распределение параметризуется набором 

положительных коэффициентов α, определяющих форму плотности. Среди его 

важных свойств – способность генерировать нормированные векторы, сумма 

компонентов которых всегда равна 1, что делает его особенно удобным для задач, 

связанных с вероятностным моделированием и машинным обучением, включая 

задания априорных распределений в байесовской статистике. 

Для генерации популяции, состоящей из 100 кандидатов, указанный процесс 

должен быть повторён 100 раз, как схематически показано на рисунке 28. 

Структура кандидата (формула 35) представляет собой список L, состоящий 

из 18 одномерных массивов (векторов a). 

L={a1, a2, …, a18} (35) 

Размерность вектора ai равна количеству входящих в балансовую зону i 

газотранспортных потоков. 

 

В настоящем диссертационном исследовании популяция кандидатов состоит 

из 4 групп: 

Первая группа кандидатов представляет собой 5 кандидатов, показавших 

наименьший суммарный расход топливного газа в стоимостном выражении по 

всей размерности графа ЕСГ. Для её формирования необходимо вектор 𝑣⃗ 

результатов расхода топливного газа в стоимостном выражении всех кандидатов 

популяции: 𝑣⃗ = (v1, v2, …, v100) отсортировать в порядке неубывания. После 

сортировки получаем перестановку индексов (i1, i2,…, i100) такую, что vi1 ≤vi2 

≤⋯≤vi100. Находим позиции 5 кандидатов с наименьшим значением расхода 

топливного газа (формула 36). 

V 1 группа = {vi1, vi2, vi3, vi4, vi5} (36) 

Вторая группа кандидатов формируется посредством скрещивания 

представителей первой группы. Поскольку каждый кандидат представлен в виде 

списка из 18 векторов, процесс создания нового кандидата (потомка) 

осуществляется по следующему алгоритму: 

1. Инициализируется список из 18 пустых элементов. 
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2. Запускается цикл, количество итераций в котором соответствует числу 

балансовых зон. 

3. На каждой итерации случайным образом выбирается один из кандидатов 

первой группы, из которого копируется соответствующий вектор (с индексом, 

совпадающим с номером текущей итерации) в формируемый список нового 

кандидата. 

4. Цикл продолжается до тех пор, пока не будет полностью сформирован 

новый кандидат. 

В результате формируется потомок, содержащий скрещенные гены, 

унаследованные от пяти различных кандидатов-предков. 

Третья группа кандидатов формируется путем внесения мутаций в гены 

первых лучших кандидатов. Всего в третьей группе насчитывается 25 кандидатов. 

Четвертая группа сформирована случайным образом. Алгоритм ее 

формирования идентичен формированию начальной популяции. 

В процедуру отбора лучших кандидатов предлагается внести модификацию, 

отличающую разработанный подход от классических реализаций. Кандидаты, 

имеющие одинаковые значения целевой функции (стоимость расходуемого 

топливного газа), объединяются в отдельные группы и допускаются к 

скрещиванию исключительно с кандидатами, у которых целевая функция имеет 

иное значение. Такой механизм способствует повышению разнообразия 

популяции и снижает риск преждевременной сходимости алгоритма. 

В качестве целевой функции эволюционного алгоритма использована 

функция расчёта стоимости топливного газа для каждой балансовой зоны. 

Наилучшим кандидатом будет являться тот кандидат, распределение потоков 

топливного газа которого продемонстрирует наименьший расход газа в 

стоимостном выражении. Также целевая функция контролирует превышение 

потока природного газа по транспортному коридору над технически возможной 

пропускной способностью (ТВПС) газопроводов. При превышении 

прогнозируемого значений ТВПС кандидатом, расход топливного газа такого 

кандидата приравнивается к «+∞», при дальнейшей сортировке и отборе лучших 
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кандидатов такой кандидат заведомо не попадет ни в одну из четырёх групп новой 

популяции.  

Кроме того, целевая функция формирует широкий набор технико-

экономических критериев оптимизации, позволяющих оценивать кандидатов не 

только по расходу топливного газа, но и с учётом системы ограничений, штрафов 

и поощрений. В качестве таких критериев могут использоваться показатели 

закачки и отбора газа из ПХГ, приоритетное использование определённых 

газотранспортных коридоров, а также поддержание оптимального запаса газа в 

ГТС. Подходы к многокритериальной оптимизации подробно рассмотрены в [43] 

и во второй главе диссертации. 

Путём введения ограничений и механизмов штрафов/вознаграждений 

возможно существенно модифицировать базовый генетический алгоритм, 

обеспечив его гибкость, возможность адаптации и включения дополнительных 

параметров оптимизации. Таким образом, при необходимости разработанный 

подход может быть расширен до многокритериального за счёт изменения целевой 

функции эволюционного алгоритма без необходимости принципиальной 

перестройки модели. 

Критерии завершения работы генетического алгоритма подробно 

рассмотрены в ряде источников. Так, в работе [20] отмечается, что наиболее 

распространёнными условиями остановки являются: 

– достижение заданного количества поколений; 

– истечение установленного времени выполнения алгоритма; 

– сходимость популяции. 

При этом точно определить заранее, сколько итераций или времени 

потребуется до достижения сходимости, затруднительно, поэтому указанные 

критерии чаще всего применяются как дополнительные. Проверка устойчивости 

популяции в общем случае требует значительных вычислительных ресурсов, 

поэтому на практике чаще ориентируются на стабилизацию значения целевой 

функции, отражающего отсутствие существенных изменений между 

последовательными поколениями. 
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С учётом современных вычислительных мощностей и снижения стоимости 

машинного времени, необходимость в ограничениях по числу поколений или 

времени становится менее актуальной. Например, реализация рассматриваемой 

задачи оптимизации на языке Python 3.12 с использованием процессора Intel(R) 

Xeon(R) CPU @ 2.20GHz выполняется за время, не превышающее 5 минут. При 

разработке алгоритма применялись общедоступные библиотеки: numpy v1.26.4 – 

для численных вычислений, pandas v2.1.4 – для обработки табличных данных, 

networkx v3.3 – для работы с графовыми структурами, random v3.12 – для 

генерации случайных чисел и распределений, а также matplotlib v3.7.1 – для 

визуализации результатов. При необходимости алгоритм может быть адаптирован 

на языках с более высокой производительностью, например, C++. 

С позиции автора наилучшим и наиболее универсальным критерием 

остановки является достижение сходимости популяции, что свидетельствует о 

стабилизации результатов оптимизации и достаточности эволюционного поиска. 

На рисунке 29 показана динамика изменения значения целевой функции для 

кандидатов с номерами 1 (лучший кандидат), 5 и 10. 

 

Рисунок 29. Динамика обучения кандидатов 

Анализ рисунка 29 показывает, что с увеличением номера поколения 

различия в значениях стоимости затрат на топливный газ среди первой группы 
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кандидатов уменьшаются и появляется тенденция к сходимости. При этом 

кандидаты из остальных групп показывают значения расхода топливного газа в 

достаточно широком диапазоне, и демонстрируют, как механизм мутаций 

продолжает активно исследовать пространство решений в попытке обнаружить 

более эффективные конфигурации для рассматриваемой задачи оптимизации. 

 

3.1.2. Экономический эффект работы алгоритма оптимизации распределения 

потоков ЕСГ 

На рисунке 30 изображено концептуальное представление работы 

генетического алгоритма, разработанного для оптимизации распределения 

потоков природного газа в ЕСГ. Это общая схема, охватывающая ключевые этапы 

алгоритма – от загрузки исходных данных и формирования начальной популяции 

до получения финального решения с минимальными затратами на топливный газ 

(СТН). 

Алгоритм включает механизмы оценки технической корректности решений, 

контроля ограничений по пропускной способности, применения нейросетевой 

модели для расчёта затрат, а также формирования новых поколений путём отбора, 

скрещивания, мутации и генерации случайных решений. Завершение работы 

алгоритма наступает при достижении критерия сходимости, после чего 

определяется оптимальное распределение потоков и соответствующие затраты. 

В результате работы алгоритма формируется итоговая популяция, в которой 

каждый кандидат представляет собой возможное решение задачи распределения 

газотранспортных потоков. Из этой популяции выбирается лучший кандидат – тот, 

для которого суммарные затраты на топливный газ (СТН) оказываются 

минимальными при соблюдении всех технических и балансовых ограничений. 

Этот кандидат отражает наиболее вероятное оптимальное распределение 

потоков природного газа между элементами ЕСГ. Полученное решение 

обеспечивает более эффективное использование ресурсов и способствует 

снижению эксплуатационных расходов. Результат работы алгоритма можно 
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рассматривать как экономически обоснованную конфигурацию транспортировки 

газа на заданный газовый день. 

  

Рисунок 30. Концептуальная блок-схема работы эволюционного алгоритма 

На рисунке 31 изображен итоговый граф ГТС, сформированный на основе 

результатов работы генетического алгоритма за 1 газовые сутки. Вершины графа 

представляют собой балансовые зоны, в которых осуществляется учёт 

транспортируемого объема газа, а ребра обозначают направления потоков между 

этими зонами. 
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На ребрах указаны значения потоков газа в миллионах кубических метров, в 

скобках – изменения этих потоков, предложенные алгоритмом в результате 

оптимизации. Положительные значения отражают рост объема по сравнению с 

базовым сценарием, отрицательные – его снижение. Толщина стрелок 

пропорциональна величине потока, а размер вершин показывает уровень 

газонагрузки или распределения в соответствующей балансовой зоне. 

Визуализация позволяет наглядно оценить перераспределение потоков и 

эффективность предложенного решения. 

 

Рисунок 31. Итоговый граф распределения потоков газа после оптимизации 

Следует отметить, что каждое ребро на графе представляет собой 

визуализацию агрегированного (суммарного) потока газа между двумя 

балансовыми зонами. На практике такой поток может формироваться за счёт 

нескольких параллельных газопроводов или отдельных участков различных ГТС. 

Несмотря на агрегированный вид визуализации, структура лучшего кандидата, 

выбранного в результате работы алгоритма, включает полную детализацию по 

каждому компоненту газотранспортного потока – с учётом пропускных 

способностей, технических ограничений и затрат на топливный газ по каждому 

маршруту. 
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В таблице 24 представлены результаты работы алгоритма за один газовый 

день. Значения параметров лучшего кандидата демонстрируют снижение 

совокупных затрат на топливный газ с 305,3 до 291,6 млн рублей или на 13,7 млн 

рублей. 

Таблица 24. Результаты работы эволюционного оптимизационного алгоритма 

Номер 

бал. 

зоны 

Расчетное 

значение СТН, 

тыс. руб. 

Оптимизированное 

значение, тыс. руб. 

Отклонение, 

тыс. руб. 

Откло-

нение, % 

1 6 344,09 5 399,27 944,82 14,89 

2 18 793,20 18 633,82 159,38 0,85 

3 6 359,67 6 178,71 180,96 2,85 

4 27 379,76 27 477,72 -97,95 -0,36 

5 13 186,82 12 351,57 835,25 6,33 

6 18 096,83 17 679,00 417,83 2,31 

7 3 054,39 3 027,42 26,96 0,88 

8 29,60 29,52 0,07 0,25 

9 6,98 6,98 0,00 0,04 

10 17 008,28 16 004,90 1 003,38 5,90 

11 12 983,65 12 956,06 27,59 0,21 

12 4 862,65 2 273,39 2 589,27 53,25 

13 32 217,71 30 343,50 1 874,21 5,82 

14 10 634,19 9 912,62 721,57 6,79 

15 6 790,83 6 314,75 476,08 7,01 

16 108 944,10 105 422,99 3 521,11 3,23 

17 17 917,99 16 920,65 997,34 5,57 

18 715,55 715,55 0,00 0,00 

ИТОГО 305 326,30 291 648,41 13 677,89 4,48 

 

Анализ представленных данных показывает, что во всех балансовых зонах, 

за исключением зоны 4, реализована экономия топливного газа в результате 

оптимизации, при этом среднее снижение затрат по всей системе составило 

4,48%. Наиболее существенные снижения затрат наблюдаются в зонах №1, №5, 

№10, №13, №14 и №16, где абсолютное отклонение превышает 700 тыс. рублей по 

каждой зоне. Это свидетельствует о значительном потенциале для оптимизации 

эксплуатационных расходов в данных зонах. 

Особое внимание заслуживает балансовая зона №12, в которой после 

оптимизации наблюдается резкое снижение затрат на топливный газ – более чем 

на 2,5 млн рублей или 53,25%. Такое значительное отклонение выходит за рамки 

типичных изменений по другим зонам и может указывать как на наличие 
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скрытого резерва, так и на возможные неточности в работе модели. В связи с этим 

необходимо провести дополнительную проверку корректности прогнозной 

модели, использованной для расчётов по зоне №12.  

 

3.2. Архитектура и функции интеллектуальной СППР для экономически 

обоснованного управления потоками газа 

3.2.1. Интеллектуальные системы поддержки решений как инструмент 

повышения экономической эффективности ГТС 

Современные ГТС представляют собой сложные, пространственно 

распределённые технологические комплексы, функционирование которых 

сопровождается большим объёмом данных, высокой степенью неопределённости 

и необходимостью оперативного принятия решений в условиях меняющихся 

внешних и внутренних факторов. В таких условиях роль автоматизированных 

интеллектуальных инструментов, способных поддерживать процесс принятия 

управленческих решений, возрастает особенно остро [61]. 

Разработка и внедрение СППР в сфере управления потоками природного 

газа направлены на решение одной из ключевых экономических задач – 

повышение эффективности использования ресурсов за счёт оптимизации режимов 

транспортировки, сокращения расходов на топливо для собственных нужд, 

минимизации потерь и повышения адаптивности системы к изменению спроса. 

Традиционные методы, основанные на экспертных оценках и ручной настройке 

режимов, постепенно теряют эффективность по мере усложнения 

инфраструктуры и увеличения экономических рисков, возникающих вследствие 

нерационального распределения потоков газа. [170]. 

Кроме того, СППР позволяет интегрировать результаты прогнозных 

моделей, оценки технических ограничений и стоимостных показателей в единую 

информационную среду, что даёт возможность диспетчерскому персоналу 

принимать обоснованные и согласованные с экономическими целями компании 

решения. Это особенно важно в условиях ценовой волатильности, 

диверсификации потребителей и необходимости соблюдения технологических 
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лимитов, установленных нормативными и производственными документами. 

Внедрение СППР является не только технологически обоснованным, но и 

экономически целесообразным шагом, позволяющим обеспечить баланс между 

надёжностью функционирования ГТС и минимизацией эксплуатационных затрат. 

Разработка таких систем формирует основу для перехода от реактивного к 

проактивному управлению, основанному на аналитике, моделировании и 

оптимизации бизнес-процессов [26]. 

В Российской Федерации накоплен значительный опыт применения 

программно-вычислительных комплексов (ПВК), предназначенных для 

моделирования и оптимизации потоков природного газа, а также режимов работы 

объектов газотранспортной и газораспределительной инфраструктуры. 

Разработанные как отечественными, так и зарубежными специалистами, такие 

комплексы находят применение в самых различных областях – от 

технологического моделирования до стратегического планирования поставок газа. 

В свое время предпринимались попытки интеграции таких ПВК в 

производственные процессы ПАО «Газпром» и его дочерних обществ с целью 

повышения эффективности управления транспортными потоками. Однако 

реализация подобных инициатив зачастую сталкивается с рядом проблем: 

отсутствием единой архитектуры данных, несовместимостью используемых 

моделей с фактическими условиями эксплуатации и недостаточной адаптацией 

программных решений к специфике ЕСГ. Указанные обстоятельства 

подчеркивают актуальность разработки новых подходов, сочетающих в себе 

технологические и экономические аспекты оптимизации, с применением методов 

машинного обучения и эволюционных алгоритмов, что и составляет основу 

настоящего исследования [174]. 

Сарданашвили С.А. и Швечков В.А. [59] в своей статье обосновывают 

применение технологий искусственного интеллекта для создания 

интеллектуальной системы поддержки диспетчерских решений в ЕСГ. 

Разработанная методика предполагает оперативный ситуационный анализ, 

прогнозирование поведения системы и интерактивное многовариантное 
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планирование газовых потоков. Особое внимание уделено нейросетевому 

моделированию, позволяющему учитывать динамическое взаимодействие 

характеристик системы, что существенно улучшает оперативность и качество 

принимаемых решений. 

В статье [38] предлагается подход к разработке СППР для экономически 

обоснованного краткосрочного планирования потоков природного газа. Автор 

описывает инструмент, интегрирующий модули прогнозирования 

газопотребления, расчета расхода топливного газа и оптимизации на основе 

эволюционных алгоритмов. Реализация предложенного подхода позволяет 

учитывать технологические ограничения газотранспортной сети и стоимостные 

критерии, обеспечивая снижение эксплуатационных расходов при сохранении 

надежности системы. 

Представленные в таблице 25 программно-вычислительные комплексы и 

СППР охватывают широкий спектр задач, связанных с моделированием, расчётом 

и оптимизацией работы ГТС. Несмотря на их функциональное разнообразие, 

остаётся актуальной задача создания более адаптивных и интеллектуальных 

инструментов, способных обеспечивать повышение экономической 

эффективности управления потоками природного газа в условиях растущей 

сложности и динамики эксплуатационной среды. 

Таблица 25. Программно-вычислительные комплексы для моделирования, 

поддержки принятия диспетчерских решений и оптимизации режимов работы 

ГТС 

Название 

ПВК (СППР) 

Страна 

производства 
Краткое описание 

«Астра газ» Россия 

Разработан Тюменским филиалом ООО «Газпром 

развитие» по заказу ПАО «Газпром». Используется во 

всех ГТО, имеет модуль расчётов потока уровня ЕСГ, 

ведёт архив фактических режимов работы ГТС, обладает 

собственным расчётным модулем и поддерживает 

диспетчерский журнал. На его основе созданы ПВК 

SONET, «Астра добыча» и «Кольцо». 
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Продолжение таблицы 25 

«Веста» Россия 

Разработан специалистами РГУ нефти и газа им. И. М. 

Губкина по заказу ООО «Интойл». Установлен в ООО 

«Газпром трансгаз Москва». Построен на классических 

алгоритмах гидравлического расчёта. Позволяет 

рассчитывать рабочие точки ГПА по паспортным 

характеристикам. На его основе создан ПВК 

«Диспетчерский тренажёр». Расчётный модуль основан на 

собственной научной школе и адаптирован на 

фактических режимах работы ПС. 

«Волна» Россия 

Разработан ВНИИ технической физики им. Е.И. 

Забабахина. Экспериментально внедрён в ООО «Газпром 

трансгаз Ухта». Построен как двухуровневая система: 

уровень ГТС и уровень КС (на базе ПВК «Агат»). 

Использует адаптированные алгоритмы гидравлических 

расчётов, учитывающие паспортные характеристики и 

реальные параметры работы ЦБН. 

«CorNet», 

«AMADEUS», 

«Alfargus» 

Россия / 

Словакия 

(совместная 

разработка) 

Разработаны ЗАО «Физико-технический центр», г. Саров. 

Алгоритмы базируются на оригинальных математических 

теориях. AMADEUS создан для словацкой ПС. На базе 

Alfargus создан ПВК «Малое московское кольцо». Также 

разработан диспетчерский тренажёр, применяемый в 

Волгоградском колледже газа и нефти для подготовки 

персонала. 

«Ингир» Россия 

Разработан РГУ нефти и газа им. И.М. Губкина и ООО 

«Ингойл», принадлежит ОАО «Гипрогазцентр». 

Установлен в одноимённом проектном институте в 

Нижнем Новгороде. Предназначен для использования в 

проектных работах при модернизации, реконструкции и 

строительстве магистральных газопроводов ЕСГ. 

Поддерживается и используется специалистами 

института. 

«ИРС» Россия 

Разработан ОАО «Газпром промгаз» совместно с РГУ 

нефти и газа им. И.М. Губкина. Установлен и 

используется в ОАО «Газпром промгаз». Представляет 

собой многоуровневую интегрированную систему, 

включающую модули расчёта потоков по ЕСГ, 

гидравлического расчёта ГТС, распределительных 

газопроводов и систем газоснабжения после ГРС. 

«Газоператор» Россия 

Разработан и внедрён специалистами ООО 

«НИИгазэкономика». Принадлежит разработчику, 

используется в НИИ и Центральном производственно-

диспетчерском департаменте ПАО «Газпром». 

Представляет собой комплекс для решения потоковых 

технико-экономических задач на основе балансового 

распределения газа по участкам ГТС ЕСГ. Поддерживает 

расчёт товаротранспортной работы, маршрутов 

транспортировки, тарифов, свободных мощностей и 

других показателей. 
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Продолжение таблицы 25 

«ФИРМА» Украина 

Разработан специалистами Харьковского национального 

университета радиоэлектроники по заказу ДК 

«Укртрансгаз» ОАО «Нафтогаз Украины». Установлен в 

УМГ «Харьковтрансгаз». Разрабатывался специально для 

нужд данного управления. Эксплуатируется сотрудниками 

УМГ, сопровождение осуществляет университет. 

ПВК 

Львовского 

математическ

ого центра 

Украина 

Разработан ООО «Математический центр» по заказу ДК 

«Укртрансгаз» ОАО «Нафтогаз Украины». Внедрён во 

всех УМГ, кроме УМГ «Харьковтрансгаз». Отличается 

наличием отдельного модуля моделирования и 

оптимизации технологических трубопроводов ПХГ от 

скважин до ГТС. Поддерживается разработчиком, 

используется диспетчерскими службами. 

ПВК 

Харьковского 

института 

транспорта 

газа 

Украина 

Разработан и внедрён специалистами Харьковского 

института транспорта газа (филиал ДК «Укртрансгаз»). 

Принадлежит ДК «Укртрансгаз» ОАО «Нафтогаз 

Украины». Установлен в УМГ «Харьковтрансгаз», 

«Донбасстрансгаз», «Прикарпаттрансгаз», 

«Шебелинкагазпром» и разрабатывается для УМГ 

«Черкассытрансгаз». 

SIMONE 
Германия / 

Чехия 

Разработан SIMONE Research Group s.r.o., сопровождение 

осуществляет LIWACOM Informatiostechnik GmbH. 

Используется многими газовыми компаниями Европы, а 

также в ООО «Газпром трансгаз Сургут», НИИ «Газпром 

ВНИИГАЗ» и «НИИгазэкономика». В течение 10 лет 

велась адаптация для «Газпром трансгаз Нижний 

Новгород». 

SynerGEE Gas 

Великобритан

ия / США / 

Германия 

Разработан Advantica Inc. и Advantica Ltd., входящими в 

группу Germanischer Lloyd Industrial Services. 

Используется в ряде международных газовых компаний. 

Временная лицензия приобреталась ООО 

«НИИгазэкономика» для тестирования и апробации. 

CCS США 

Разработан CONTINUOUS CONTROL SOLUTIONS, Inc. 

Установлен на некоторых ПС в Казахстане. Специалисты 

ПАО «Газпром» вели консультации с разработчиками по 

вопросу адаптации системы для нужд компании. 

ESI США 

Разработан Energy Solution International, Inc. Состоит из 

трёх модулей: Pipeline Studio, Pipeline Manager и Pipeline 

Transporter. Используется в газотранспортных и 

газораспределительных компаниях Европы и других 

стран. В ПАО «Газпром» обсуждалась возможность 

адаптации системы. 

GanesI Германия 

Разработан специалистами PSI AG. Установлен в ООО 

«Газпром трансгаз Краснодар» и «Газпром трансгаз 

Ставрополь» на двух уровнях диспетчерского управления. 

Также применяется в ряде европейских компаний. 

Представляет интересы в России через ООО «ПСИ». 
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Продолжение таблицы 25 

OLGA 2000 Норвегия 

Разработан Scandpower Petroleum Technology AS. 

Приобретён ПАО «Газпром» для тестирования. 

Используется в проектных институтах, например, в ОАО 

«Гипроспецгаз». Позволяет рассчитывать многофазное 

состояние газового потока. Применялся для анализа 

проектов «Голубой поток», «Северный поток» и др. 

PipeSim 
Великобри-

тания 

Разработан Baker Jardine & Associates Limited. Существует 

в нескольких версиях (Single Branch, Net, Goal). 

Установлен в ООО «Газпром добыча Ноябрьск». 

Характеризуется направленностью на проектные расчёты, 

работу с многокомпонентными смесями, возможностью 

расчётов при давлениях до и свыше 10 МПа. 

MSI Kenny США 

Разработан Multiphase Solutions Kenny, Inc. Установлен в 

ООО «Газпром трансгаз Санкт-Петербург» и на КС 

«Портовая». Поддерживает инженерное моделирование, 

мониторинг в реальном времени, автоматическое и 

сценарное прогнозирование. Используется при расчётах 

подводной части газопровода «Северный поток». 

 

Представленные в таблице программно-вычислительные комплексы и 

СППР охватывают широкий спектр задач, связанных с моделированием, расчётом 

и оптимизацией работы ГТС. Несмотря на их функциональное разнообразие, 

остаётся актуальной задача создания более адаптивных и интеллектуальных 

инструментов, способных обеспечивать повышение экономической 

эффективности управления потоками природного газа в условиях растущей 

сложности и динамики эксплуатационной среды. 

В настоящее время СППР, охватывающие всю ЕСГ и ориентированные на 

оптимизацию газотранспортных потоков в масштабах всей сети, находятся 

преимущественно на стадии разработки и апробации. Сложность архитектуры 

ЕСГ, высокая степень взаимосвязи её элементов, а также необходимость учёта как 

технических, так и экономических факторов при принятии решений требуют 

создания многоуровневых, интегрированных СППР с использованием 

современных методов моделирования, анализа данных и искусственного 

интеллекта. Отдельные элементы таких систем уже внедряются в дочерних 

обществах ПАО «Газпром», однако полнофункциональные решения, способные 



137 
 

осуществлять комплексную оптимизацию на уровне всей системы, пока находятся 

на этапе проектирования, пилотных испытаний или научных исследований. 

3.2.2. Структура и логика работы интеллектуальной СППР для ГТС 

На рисунке 32 представлена концептуальная схема СППР уровня ЕСГ, 

направленная на оптимизацию распределения газотранспортных потоков с учётом 

технологических ограничений, экономических показателей и прогностической 

информации. Основной целью такой системы является минимизация совокупных 

затрат на транспортировку природного газа при сохранении надёжности поставок 

и соблюдении требований к режимам работы объектов ЕСГ. СППР обеспечивает 

интеграцию данных о текущем состоянии системы, результатах моделирования и 

прогнозирования, а также механизмов принятия решений, что позволяет 

формировать экономически обоснованные и оперативно выполнимые 

управленческие действия. 

 

Рисунок 32. Концептуальная схема СППР уровня ЕСГ 
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Модуль объединяет данные по распределению природного газа на 

внутреннем рынке, удовлетворению экспортных заявок на поставку газа в 

ближнее (страны СНГ, Прибалтики) и дальнее (северо-западная Европа) 

зарубежье. Если распределение газа по экспортным заявкам осуществляется 

путём сбора потребностей экспортных контрагентов, проверки заявок на 

соответствие требованиям экспортных контрактов и соблюдения технических 

возможностей по транспортировке в экспортных направлениях, то распределение 

газа на внутреннем рынке требует проведения прогнозных расчётов. В работе С.Н. 

Панкратова и др. [51] подробно описывается работа модуля прогнозирования 

расхода газа в зависимости от метеоусловий конкретной балансовой зоны. 

Данный модуль успешно внедрён и функционирует в промышленной 

эксплуатации в ПАО «Газпром». Для обучения модуля использовалась 

ретроспективная информация по фактическому потреблению газа и данные 

метеоусловий за предыдущие периоды. При подаче на вход алгоритма актуального 

метеопрогноза на следующие сутки модуль формирует на выходе вектор 

прогнозируемых значений потребления газа по балансовым зонам. Структура 

выходного вектора значений потребления 𝐶 выглядит следующим образом 

(формула 37): 

𝐶 = {IDi: Consumpi}, (37) 

где i – номер балансовой зоны; ID – идентификатор балансовой зоны; Consump – 

прогнозируемое внутреннее потребление природного газа в балансовой зоне. 

Векторы значений экспортных потоков газа в ближнее (𝐸⃗⃗бз) и дальнее (𝐸⃗⃗дз) 

зарубежье формируются аналогично. 

Блок технологических ограничений включает максимально допустимый 

уровень добычи газа, ограниченный мощностью добывающих скважин и 

условиями эксплуатации месторождений, а также действующими планами по 

закачке и отбору газа из ПХГ. Учитываются также текущие ограничения на 

транспортировку газа, вызванные планово-предупредительными ремонтами 

(ППР) и другими технологическими мероприятиями на магистральных 

газопроводах, КС и других объектах ЕСГ. Отдельно контролируется выполнение 
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требований по оптимальному запасу газа в балансовых зонах, необходимому для 

обеспечения надежности поставок при изменении потребления. Такой запас 

определяется с учетом оперативного прогноза и согласно нормативам 

ПАО «Газпром» [10]. Дополнительными ограничениями служат 

производственные планы газоперерабатывающих заводов (ГПЗ), задающие 

допустимые характеристики природного газа по объёмам и компонентному 

составу для переработки и последующего распределения. Учёт всех указанных 

факторов позволяет сформировать технически и экономически обоснованные 

решения по распределению потоков газа. 

Центральным элементом СППР является оптимизационный модуль, 

основанный на эволюционных алгоритмах. Он интегрирует данные, формируемые 

другими функциональными блоками СППР: прогнозами распределения газа, 

технологическими ограничениями, историческими данными о потоках и текущей 

коммерческой информацией. Совместная работа этих блоков в рамках СППР 

обеспечивает возможность автоматизированного поиска управленческих решений, 

минимизирующих совокупные издержки на транспортировку газа при 

соблюдении эксплуатационной устойчивости в условиях неопределённости и 

вариативности спроса. Все предложенные в диссертационной работе подходы и 

модели интегрированы в рамках эволюционного оптимизационного модуля, 

который и формирует основу интеллектуальной СППР. 

Итогом работы оптимизационного модуля являются диспетчерские задания 

по добыче газа, диспетчерские задания по работе ПХГ и итоговое распределение 

потоков природного газа по ГТС, которое является экономически оптимальным. 

Таким образом, предложенный алгоритм СППР интегрирует модули 

прогнозирования, оптимизации и анализа качества данных в единую систему, 

ориентированную не только на техническую корректность принимаемых 

решений, но и на их экономическую обоснованность. Работа каждого компонента 

СППР направлена на достижение стоимостных эффектов: снижение расхода 

топливного газа, минимизацию штрафов за несоблюдение контрактных 
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требований, повышение надежности прогноза затрат и доходов в диспетчерском 

управлении.  

3.3. Подход к оценке экономической эффективности системы поддержки 

принятия решений 

Разработка прототипа СППР в рамках настоящего исследования может быть 

отнесена к категории научно-исследовательских и опытно-конструкторских работ 

(НИОКР). Это обусловлено как содержанием выполняемых задач, так и уровнем 

научной и технической новизны, заложенной в проект. 

Во-первых, в процессе создания прототипа применяются современные 

методы машинного обучения, эволюционных алгоритмов и анализа больших 

массивов данных, что предполагает не просто использование готовых решений, а 

разработку новых подходов к прогнозированию, оптимизации и принятию 

решений в условиях реального технологического процесса. Во-вторых, 

прототипирование системы предполагает создание опытного образца, 

демонстрирующего применимость и эффективность предлагаемых решений. Это 

уже входит в сферу опытно-конструкторских работ, направленных на реализацию 

технического решения, основанного на результатах предшествующего 

исследования. Реализация СППР требует не только алгоритмической разработки, 

но и программной реализации, организации связи с источниками данных, а также 

визуализации и анализа результатов, что характерно для стадии ОКР. 

Кроме того, во-вторых, предполагается практическое применение 

разработанного прототипа в рамках диспетчерского управления потоками 

природного газа. Его функциональность ориентирована на автоматизированное 

формирование предложений по оптимальному режиму работы системы, что, с 

одной стороны, повышает экономическую эффективность эксплуатации, а с 

другой – подтверждает целевую направленность на внедрение полученных 

результатов в производственную практику. 
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3.3.1. Формирование исходных условий и макроэкономических параметров 

для оценки эффективности СППР 

Согласно методическим положениям [11], оценка экономической 

эффективности проекта осуществляется на основе анализа разностного денежного 

потока, который определяется как разница между финансовыми потоками 

базового варианта (без реализации проекта) и проектного варианта (с внедрением 

предложенного решения). При этом проводится сопоставление фактических 

денежных потоков, возникающих в результате внедрения, с гипотетическими 

потоками, которые имели бы место при отсутствии изменений. В обоих случаях 

денежный поток рассчитывается как разность между притоками и оттоками 

средств. В рамках данного исследования принято допущение о равенстве 

притоков в обоих сценариях, что означает, что величина разностного денежного 

потока формируется исключительно за счёт различий в уровне затрат. 

В соответствии с [15, 17], при оценке объектов интеллектуальной 

собственности и нематериальных активов используются три классических 

подхода – затратный, рыночный (сравнительный) и доходный, каждый из которых 

включает различные методики расчёта. Основным из них является доходный 

подход, поскольку именно он наиболее полно отражает реальную экономическую 

ценность объектов интеллектуальной собственности. 

Согласно [17], доходный подход основан на дисконтировании будущих 

денежных потоков (ожидаемых экономических выгод), генерируемых объектом 

оценки, либо на капитализации годового чистого дохода (эффекта), получаемого 

от внедрения СППР. 

Метод дисконтирования денежных потоков – это определение стоимости 

объекта суммированием текущих стоимостей, ожидаемых от него потоков дохода. 

Расчет стоимости объекта методом дисконтирования денежных потоков 

основывается на следующем положении – стоимость объекта является текущей 

стоимостью дохода, который будет получен его владельцем в будущем.  
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Процесс определения текущей стоимости ожидаемых доходов методом ДДП 

(Net Present Value, NPV, формула 38) состоит из следующих последовательных 

этапов. 

1. Расчет величины свободного денежного потока каждого периода 

прогноза (СF1,…, СF n-1, СF n). 

2. Расчет и обоснование ставки дисконтирования и ставки возвратной 

капитализации для реверсии (r1,…, rn-1, rn). 

3. Расчет постпрогнозной (терминальной) стоимости, рассчитанной на 

конец последнего прогнозного периода (TV). 

𝑁𝑃𝑉 = ∑
𝐶𝐹𝑖

(1 + 𝑟𝑖)𝑖

𝑛

𝑖=1

+
𝑇𝑉

(1 + 𝑟𝑛)𝑛
 (38) 

где 𝐶𝐹𝑖 – свободный денежный поток (Free Cash Flow) в год i; n – горизонт 

прогнозирования (число лет); 𝑟𝑖 – ставка дисконтирования i года; 𝑇𝑉 – 

постпрогнозная (остаточная, терминальная) стоимость, рассчитанная на конец 

последнего прогнозного периода; 
𝑇𝑉

(1+𝑟𝑛)𝑛
 – дисконтированное значение 

терминальной стоимости. 

 

В качестве денежного потока в настоящем исследовании рассмотрен поток 

денежных средств, полученный от экономии расходов на приобретение 

топливного газа. 

Для определения терминальной стоимости используется формула Гордона 

(формула 39): 

𝑇𝑉 =  
𝐶𝐹𝑛+1

𝑟 − 𝑔
 (39) 

где 𝐶𝐹𝑛+1 – денежный поток за первый год после прогнозного периода, обычно 

считается как 𝐶𝐹𝑛 (1 + g); g – темп роста денежных потоков в постпрогнозный 

период. 

 

Определение длительности прогнозного периода выбирается таким образом, 

чтобы максимально точно спрогнозировать ожидаемые темпы изменения 
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компонентов денежного потока. Вместе с тем необходимо учитывать, что степень 

достоверности прогнозных данных снижается с течением времени. Поэтому с 

учетом нестабильной ситуации в экономике применен период прогноза, равный 3 

годам. 

Согласно результатам моделирования, применение прототипа позволит 

достичь экономический эффект в размере 13 677,89 тыс. рублей (Таблица 24) за 

одни газовые сутки или 4,48 % по сравнению с базовым вариантом.  

Таблица 10 содержит данные по расходу топливного газа в годовом 

выражении, которые составили 119 994,29 млн рублей. Таким образом, 

экономический эффект от внедрения СППР в годовом выражении может 

составить: 119 994 29 млн руб. * 4,48% = 5 375,74 млн руб. 

Далее приведены сценарные условия для построения прогнозных денежных 

потоков.  

С целью обеспечения надежности поставок природного газа всем 

категориям потребителей, а также продолжения реализации программ социальной 

газификации и соединения новых регионов с ЕСГ индексация в 2025 г. оптовых 

цен на газ для всех категорий потребителей будет проведена на уровне 10,3%. 

В 2026-2027 гг. рост регулируемых цен на газ вернется к исторически 

принятым значениям, не превышающим прогнозную годовую инфляцию. 

Индексация газа для всех потребителей в 2026 г. составит 4,3%. Далее для всех 

потребителей оптовая цена на газ увеличится на 4,0 процента [172] (таблица 26). 

Таблица 26. Изменение цен на газ 

Дата индексации 

цены на газ 
01.07.2024 01.07.2025 01.07.2026 01.07.2027 

Размер индексации 

за период, % 
11,2 10,3 4,3 4 

 

Индекс цены на газ, полученный пропорционально количеству дней в году 

действия актуальной цены представлен в таблице 27. 
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Таблица 27. Годовой индекс роста цен на газ 

Год 2024 2025 2026 2027 

Индекс цены на газ г/г 1 1,1075 1,073 1,0415 

 

В соответствии с [171] в Российской Федерации прогнозируется следующее 

изменение добычи природного газа (таблица 28): 

Таблица 28. Сценарии изменения объемов добычи природного газа 

Добыча газа  

(включая ПНГ) 
Вариант 

2024 2025 2026 2027 

оценка прогноз 

млрд куб. м 
Базовый 668,2 695,4 709,1 729,7 

Консервативный 668,2 659,8 666 671 

индекс изменения г/г 
Базовый 1 1,041 1,020 1,029 

Консервативный 1 0,987 1,009 1,008 

 

Также в соответствии с [171] темпы роста ВВП Российской Федерации 

прогнозируются в следующем размере (таблица 29): 

Таблица 29. Темпы роста ВВП Российской Федерации, прогноз до 2027 года 

Вариант 
2023 2024 2025 2026 2027 

отчет оценка прогноз 

Базовый % г/г 103,6 103,9 102,5 102,6 102,8 

Консервативный % г/г 103,6 103,9 101,7 101,0 102,6 

 

Для показателя g в формуле (39) использован темп роста ВВП 2027 года для 

различных сценариев развития экономики. 

Поскольку внедрение СППР позволяет снизить операционные затраты на 

транспортировку природного газа, это приводит к росту прибыли до 

налогообложения и, как следствие, к увеличению налогооблагаемой базы по 

налогу на прибыль. В соответствии с [5], полученная экономия увеличивает 

размер базы по налогу на прибыль, поэтому при расчёте свободного денежного 

потока необходимо учитывать влияние налога на прибыль в размере 25% [5, п.1, 

статья 254] и очищать экономический эффект от его воздействия. 

Итоговые результаты расчета денежных потоков прогнозных и 

постпрогнозного периодов, а также базового и консервативного сценариев 

приведены в таблице 30: 
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Таблица 30. Результаты расчета денежных потоков 

Параметр ДП Сценарий 2024 2025 2026 2027 

Индексация цен на газ, % г/г 1 1,1075 1,073 1,0415 

Рост добычи газа, % 

г/г 

Базовый 1 1,041 1,02 1,029 

Конс. 1 0,987 1,009 1,008 

Рост ВВП, % г/г 
Базовый 1,039 1,025 1,026 1,028 

Конс. 1,039 1,017 1,01 1,026 

Экономический 

эффект от внедрения 

СППР, млн руб. 

Базовый 5 375,74 6 197,74 6 783,17 7 269,55 

Конс. 
5 375,74 5 876,24 6 361,95 6 678,98 

Налог на прибыль, 

млн руб. 

Базовый 1 343,94 1 549,43 1 695,79 1 817,39 

Конс. 1 343,94 1 469,06 1 590,49 1 669,75 

Чистая прибыль от 

внедрения СППР, 

млн руб. 

Базовый 4 031,81 4 648,30 5 087,38 5 452,16 

Конс. 
4 031,81 4 407,18 4 771,46 5 009,24 

ЧП постпрогнозного 

периода, млн руб. 

Базовый 5 604,82 

Конс. 5 139,48 

 

3.3.2. Методология определения ставки возвратной капитализации и 

дисконтирования в проекте СППР 

 

Общеизвестные методы определения ставок дисконтирования описаны в 

[23]. 

Основным узким местом при выполнении расчётов экономической 

эффективности с применением документа [11] является именно определение 

ставки дисконтирования. От корректности её выбора напрямую зависит 

достоверность оценки приведённого экономического эффекта, однако в указанных 

правилах отсутствует чётко установленная методика расчёта, что требует 

привлечения внешних подходов и моделей, таких как CAPM или WACC, для 

обоснованного выбора дисконтирующей ставки. 

Основная часть всех расчётов в рамках [11] осуществляется с 

использованием директивно установленной ставки дисконтирования в размере 

12%. Такой подход упрощает расчёты, однако не учитывает динамику рыночных 
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условий, отраслевых рисков и специфики конкретных проектов, что может 

приводить к искажению реальной оценки их экономической эффективности.  

Метод определения ставки дисконтирования на основе средневзвешенной 

стоимости капитала (WACC, Weighted Average Cost of Capital) является одним из 

наиболее распространённых в финансово-инвестиционном анализе. 

Инвестиционный капитал, как правило, формируется за счёт двух источников 

финансирования – собственного и заемного капитала. Показатель WACC 

используется для оценки ожидаемой доходности инвестиций с учётом заданных 

условий рентабельности и структуры капитала. 

Экономический смысл расчёта средневзвешенной стоимости капитала 

заключается в определении минимально допустимого уровня доходности 

(прибыльности, рентабельности) проекта или бизнеса при существующем 

соотношении собственных и заемных средств, то есть в условиях финансового 

левериджа. 

Формула расчёта WACC выглядит следующим образом (формула 40): 

WACC =  
𝐸

𝐸 + 𝐷
× 𝑟𝑒 +

𝐷

𝐸 + 𝐷
× 𝑟𝑑 × (1 − 𝑇) (40) 

где E – рыночная стоимость собственного капитала (Equity); D – рыночная 

стоимость заемного капитала (Debt); 𝑟𝑒 – стоимость собственного капитала 

(обычно определяется по модели CAPM); 𝑟𝑑 – стоимость заемного капитала 

(ставка по долгам); T – ставка налога на прибыль (так как проценты по долгам 

уменьшают налогооблагаемую базу); 
𝐸

𝐸+𝐷
 и 

𝐷

𝐸+𝐷
  - доли собственного и заемного 

капитала в структуре финансирования. 

В соответствии с финансовой отчетность ПАО «Газпром» показатели D и E 

в тыс. рублей приведены в таблице 31: 

 

Таблица 31. Динамика обязательств и собственного капитала ПАО «Газпром» 

Показатель 2021 2022 2023 

Обязательства (D) 10 180 651 9 683 084 12 261 034 

Собственный капитал (E) 16 866 579 16 445 845 16 452 714 
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Показатели 
𝐸

𝐸+𝐷
 и 

𝐷

𝐸+𝐷
 на конец 2023 года соответственно равны (формулы 41 

и 42): 

 
𝐸

𝐸 + 𝐷
=

16 452 714

16 452 71 +  12 261 034
= 0,427 (41) 

  
𝐷

𝐸 + 𝐷
=

12 261 034

16 452 71 +  12 261 034
= 0,573 (42) 

 

Для определения стоимости заемного капитала ПАО «Газпром» в рамках 

расчёта ставки дисконтирования были использованы данные о средней 

доходности корпоративных облигаций эмитента на вторичном рынке. Доходность 

облигаций, приведенных в таблице 32 отражает реальную цену привлечения 

долгового финансирования для компании с учетом её кредитного рейтинга, 

рыночной конъюнктуры и срока обращения долговых инструментов, что 

позволяет более точно оценить ставку 𝑟𝑑 в составе формулы WACC. 

 

Таблица 32. Основные показатели облигаций ПАО «Газпром», находящихся в 

обороте 

Эмиссия Цена Доходность Дюрация 

Газпром, БО-22 96,02 22,72 0,32 

Газпром, БО-23 95,83 23,476 0,32 

Газпром Капитал, БО-001Р-07 94,08 20,464 0,61 

Газпром Капитал, БО-001Р-08 91,87 20,84 0,84 

Газпром Капитал, БО-001Р-05 87,22 18,423 1,85 

Газпром Капитал, БО-001Р-04 79,195 18,731 2 

Газпром Капитал, БО-001Р-06 82,755 18,924 2,49 

Средняя доходность 20,511  
 

Источник [175] 

 

Расчет ставки дисконтирования для денежного потока для собственного 

капитала, равный требуемой собственником ставке отдачи на вложенный капитал, 

производился на основе модели CAPM (Capital Asset Pricing Model). Сущность 

модели CAPM (𝑟𝑒) выражается формулой 43: 

𝑟𝑒 =  𝑟
𝑓

 +  𝛽 × (𝑟р  −  𝑟
𝑓

) (43) 
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где rf – очищенная от риска (безрисковая) ставка дохода; β – коэффициент Бета; rр– 

среднерыночная ставка доходности. 

 

В качестве безрисковой ставки rf  для России традиционно используется 

доходность долгосрочных государственных облигаций – в частности, ОФЗ с 

погашением через 10 лет. Этот показатель отражает минимально возможный 

уровень доходности при условии отсутствия кредитного и рыночного риска, 

характерного для суверенных долговых обязательств. В соответствии с данными 

Центрального Банка Российской Федерации доходность 10 летних облигации 

федерального займа по состоянию на 31 марта 2025 года составила 15,33% [169]. 

Разница между среднерыночной (rр) и безрисковой (rf) доходностью 

называется премией за риск. Премия за риск (rm) – это дополнительная 

доходность, которую инвестор ожидает получить за принятие риска 

инвестирования в актив по сравнению с безрисковыми вложениями. По оценкам 

аналитиков, рыночная премия за риск для России варьируется от 6% до 8%, с 

поправкой на санкционные и геополитические риски. Среднее значение премии за 

риск приведено в таблице 33. 

Таблица 33. Мнения аналитиков о размере премии за риск 

Инвестиционная компания Размер премии за риск,% 

УК «Альфа-Капитал» 6,8 

ФГ «Финам» 7,3 

«БКС Мир инвестиций» 7 - 8 

Консенсус – ставка 7,2 

 

Источник [176] 

 

В соответствии с моделью CAPM коэффициент Бета служит мерой именно 

систематического риска, связанный с макроэкономическими и политическими 

процессами, и показывает чувствительность ценных бумаг к колебаниям рынка. 

Коэффициент Бета рассчитывается как отношение ковариации ценной бумаги и 

рыночного портфеля к дисперсии рыночного портфеля (формула 44): 

 =
𝑐𝑜𝑣 (𝑥, 𝑦)

𝑣𝑎𝑟 (𝑥)
 (44) 
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Коэффициент Бета, рассчитанный в соответствии [7] с приведен на 

официальном сайте Московской Биржи. По состоянию на 30 декабря 2024 года 

коэффициент Бета для ПАО «Газпром» равен 0,72 [173]. 

Таким образом, ставка дисконтирования для денежного потока для 

собственного капитала (𝑟𝑒) равна 20,5% (формула 45): 

𝑟𝑒 =  0,1533 +  0,72 × 0,072 = 0,20514 (45) 

Рассчитав все компоненты WACC, можно определить размер средней 

взвешенной стоимости капитала (формула 46): 

WACC =  0,573 × 0,20514 + 0,427 × 0,205 × (1 − 0,25) = 0,1832 (46) 

 

3.3.3. Итоговая оценка экономической эффективности внедрения СППР по 

различным сценариям 

Далее расчёт приведённых денежных потоков выполняется по модели 

WACC, с использованием рассчитанных значений ставки дисконтирования и 

структуры капитала ПАО «Газпром». Полученные значения позволяют определить 

экономический эффект от внедрения СППР с учётом временной стоимости денег 

и рыночных факторов риска. 

Итоговое значение экономического эффекта от внедрения в промышленную 

эксплуатацию прототипа СППР, определенное для базового и консервативного 

сценария, рассчитанное для двух вариантов ставок дисконтирования приведено в 

таблице 34.  

Зависимость экономического эффекта от внедрения СППР от сценария 

развития экономики Российской Федерации и размера ставки дисконтирования 

приведена на рисунке 33. 
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Таблица 34. Экономический эффект от внедрения СППР 

Показатель Сценарий 2025 2026 2027 ПП период 

Чистая прибыль от 

внедрения СППР, млн 

руб. 

Базовый 4 648,30 5 087,38 5 452,16 5 604,82 

Конс. 4 407,18 4 771,46 5 009,24 5 139,48 

Ставка и фактор 

дисконтирования, 

рассчитанный по 

модели WACC 

18,320% 0,845 0,714 0,604   

Терминальная 

стоимость  

Базовый       36 114,49 

Конс.       32 694,70 

Приведенный 

денежный поток  

Базовый 3 928,60 3 633,97 3 291,54 21 802,76 

Конс. 3 724,81 3 408,30 3 024,14 19 738,19 

Итоговый результат для 

WACC  

Базовый       32 656,86 

Конс.       29 895,44 

Ставка и фактор 

дисконтирования по 

[11] 

12,000% 0,893 0,797 0,712   

Терминальная 

стоимость  

Базовый       60 922,00 

Конс.       54 675,27 

Приведенный 

денежный поток  

Базовый 4 150,27 4 055,63 3 880,74 43 363,08 

Конс. 3 934,98 3 803,78 3 565,47 38 916,78 

Итоговый результат для 

[11]  

Базовый       55 449,72 

Конс.       50 221,02 
 

 

Рисунок 33. График чувствительности (sensitive analysis) по ставке 

дисконтирования 
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В итоге проведенных исследований, расчетов и заключений экономический 

эффект от внедрения СППР находится в диапазоне от 29,9 млрд рублей для 

консервативного сценария и ставки дисконтирования, определенной по модели 

WACC до 55,5 млрд рублей для базового сценария развития экономики 

Российской Федерации и ставки дисконтирования, определенной по методике [11]. 

3.4. Выводы по главе 3 

В рамках проведённого исследования разработана и апробирована 

интеллектуальная система оптимизации потоков природного газа в Единой 

системе газоснабжения на основе нейросетевого прогнозирования расхода 

топливного газа и эволюционных алгоритмов распределения потоков. 

Построение графовой модели газотранспортной сети позволило 

формализовать задачу оптимизации как задачу поиска эффективного 

распределения потоков газа с учётом технологических ограничений и 

стоимостных критериев. Показано, что разработанный эволюционный алгоритм 

принципиально отличается от однокритериальных методов и обеспечивает более 

высокую степень минимизации суммарных расходов на топливный газ по 

сравнению с традиционными методами оптимизации, при этом сохраняется 

необходимая пропускная способность и надёжность газотранспортной системы. 

Результаты моделирования подтвердили, что применение предложенного 

алгоритма позволяет достичь экономии затрат на топливный газ в размере 4,48 % 

по сравнению с базовым сценарием, что эквивалентно снижению расходов на 13,7 

млн рублей за одни газовые сутки. В годовом выражении потенциальная экономия 

составляет порядка 5,4 млрд рублей. 

Впервые создан прототип СППР масштаба ЕСГ, интегрирующий 

прогнозные модели, экономические критерии и алгоритмы оптимизации в единой 

архитектуре, что позволяет формировать управленческие решения, направленные 

на достижение экономической оптимальности эксплуатации газотранспортной 

системы. 

Проведённая экономическая оценка эффективности внедрения СППР, 

выполненная с применением методов дисконтирования денежных потоков и 
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моделей WACC, отличие от традиционного подхода с директивной ставкой 

дисконтирования, показала значительный интегральный эффект: от 29,9 млрд до 

55,5 млрд рублей в зависимости от сценария развития макроэкономических 

условий и принятой ставки дисконтирования. 

В главе показано, что использование нейросетевых прогнозов в сочетании с 

эволюционными алгоритмами оптимизации является предпочтительным подходом 

для повышения экономической эффективности управления потоками природного 

газа, обеспечивая существенное снижение эксплуатационных затрат и повышение 

финансовой устойчивости газотранспортной отрасли в условиях динамично 

меняющейся внешней среды.  
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ЗАКЛЮЧЕНИЕ 

Диссертационная работа посвящена решению важной научной и 

практической народнохозяйственной задачи – разработке моделей, методов и 

инструментов, направленных на повышение точности прогнозирования, 

оптимизацию режимов функционирования ГТС и поддержку экономически 

обоснованного управления потоками природного газа. 

Современные ГТС представляют собой крупномасштабные 

инфраструктурные комплексы, функционирование которых сопряжено со 

значительными издержками. Затраты на компримирование газа, техническое 

обслуживание оборудования, обеспечение надёжности и бесперебойности 

транспортировки требуют эффективных механизмов планирования и 

регулирования, ориентированных не только на техническую реализацию 

поставленных задач, но и на достижение стоимостных и экономических целей. 

При этом, в условиях ограниченности ресурсов, изменчивости спроса и наличия 

множества факторов неопределённости, управление газовыми потоками 

представляет собой многокритериальную задачу, требующую системного подхода 

и применения интеллектуальных технологий. 

Целью диссертационного исследования поставлена разработка и 

обоснование методов и инструментов для повышения точности, достоверности и 

экономической эффективности управления ГТС путем интеграции современных 

технологий машинного обучения, анализа данных и эволюционных алгоритмов. 

Основной акцент в работе сделан на стоимостном аспекте планирования: 

снижение совокупных издержек, повышение производственной и ресурсной 

обоснованности решений, обеспечение устойчивости режимов с точки зрения 

экономических критериев. 

Для достижения поставленной цели были последовательно решены 

следующие задачи: 

− Разработаны методы управления качеством данных, направленные на 

идентификацию ошибок, выявление аномалий и анализ достоверности 

получаемой информации, позволяющие учитывать отраслевую специфику и 
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отвечающие более широкому кругу практических ситуаций по сравнению с 

существующими подходами. 

− Разработаны методы корректировки ошибок и восстановления 

пропущенных данных, основанные на горизонтальном и вертикальном анализе 

взаимосвязанных режимно-технологических и учетно-балансовых характеристик 

технологических процессов; впервые разработан интегральный показатель 

статистико-экономического эффекта – Anomaly Impact Value Index, отражающий 

совокупный стоимостной результат функционирования модуля детекции и 

корректировки аномалий и ошибок. 

− Построены модели прогнозирования расхода топливного газа по 

балансовым зонам и в целом по ГТС, обученные на ретроспективных данных, и 

позволяющие существенно повышать качество прогнозов по сравнению с 

традиционными методами, основанными на усреднённых характеристиках и 

паспортных данных оборудования. 

− Разработан интегрированный подход к оптимизации режимов 

транспортировки газа, учитывающий как технические, так и экономические 

показатели функционирования системы, который принципиально отличается от 

традиционных однокритериальных методов тем, что позволяет минимизировать 

совокупные эксплуатационные издержки при одновременном соблюдении 

производственных ограничений и достижении сбалансированных решений. 

− Впервые разработан прототип СППР в области управления потоками 

природного газа масштаба ЕСГ, ориентированный на диспетчерский и 

аналитический уровень управления, обеспечивающий интеграцию прогнозных 

моделей, экономических критериев и алгоритмов оптимизации в единой системе 

поддержки принятия решений. 

− Предложен подход к оценке экономической эффективности внедрения 

разработанного инструментария, позволяющий, в отличие от принятого на 

практике директивного подхода, учитывать рассчитанную на основе модели 

WACC фактическую ставку дисконтирования, отражающую реальную структуру 

капитала и условия функционирования газотранспортной отрасли. 
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В рамках исследования показано, что использование прогнозных моделей и 

алгоритмов эволюционной оптимизации позволяет перейти от традиционных 

эвристических подходов к системному стоимостному управлению, 

обеспечивающему рациональное распределение потоков газа в соответствии с 

текущими и ожидаемыми экономическими условиями. Применение таких 

моделей в реальном времени позволяет: 

− снизить удельные затраты на компримирование; 

− оптимизировать загрузку оборудования с учётом экономии топливного 

газа; 

− повысить надёжность принятия решений за счёт использования 

обоснованных прогнозов и оценки сценарных рисков; 

− реализовать принципы интеллектуальной адаптации системы к 

изменениям внешней среды и внутреннего состояния. 

Результаты численных экспериментов, проведённых на учетно-балансовых 

данных, полученных за одни газовые сутки работы газотранспортных обществ 

ЕСГ, подтвердили высокую практическую значимость предложенного подхода. В 

частности: 

• было зафиксировано сокращение расходов на топливный газ на уровне 

4% при сохранении производственных показателей; 

• обеспечено снижение совокупных стоимостных затрат за счёт 

рационализации маршрутов транспортировки; 

• обеспечена возможность формирования нескольких альтернативных 

управленческих решений, различающихся по критерию экономической 

эффективности. 

С учётом специфики отрасли особое внимание в диссертации уделено 

адаптивности разработанного подхода. Модели не являются жёстко 

фиксированными и могут быть адаптированы под различные сегменты ЕСГ, 

включая экспортные маршруты, внутрироссийские направления и участки с 

переменной сезонной нагрузкой. Предложенный алгоритмический аппарат 
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позволяет учитывать различия в тарифной политике, стоимости энергоресурсов и 

режимах работы оборудования. 

Научная новизна диссертационного исследования заключается в разработке 

методов управления качеством данных для идентификации и корректировки 

ошибок и аномалий с введением интегрального показателя статистико-

экономического эффекта AIVI. Построены модели прогнозирования расхода 

топливного газа, обеспечивающие повышение точности расчётов по сравнению с 

традиционными методами. Предложен многокритериальный подход к 

оптимизации режимов транспортировки газа, отличающийся возможностью 

совмещения технических и экономических критериев. Впервые создан прототип 

СППР масштаба ЕСГ, интегрирующий прогнозные модели и алгоритмы 

оптимизации. Разработан метод оценки экономической эффективности с 

использованием WACC, позволяющий учитывать фактическую структуру 

капитала вместо директивной ставки. 

Практическая значимость результатов исследования обусловлена 

возможностью их применения в деятельности ПАО «Газпром» – на уровне 

оперативного диспетчерского управления и на уровне стратегического 

планирования. Разработанный инструмент может быть интегрирован в 

действующие системы управления, дополнен модулями визуализации, анализа 

чувствительности и оценки рисков. 

Кроме того, результаты исследования могут быть использованы при 

формировании программ цифровой трансформации отрасли, развитии 

корпоративных ИТ-платформ, разработке отраслевых стандартов управления 

потоками газа, а также при подготовке кадров в сфере экономики энергетики и 

аналитики топливно-энергетического комплекса. 

Несмотря на достигнутые результаты, исследование имеет ряд ограничений, 

которые открывают перспективы для дальнейших разработок. В частности: 

− модели требуют адаптации для среднесрочного и долгосрочного 

планирования; 
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− в рамках текущей реализации не учитывались институциональные и 

поведенческие аспекты (например, особенности контрактной базы, тарифного 

регулирования, управленческой мотивации); 

− стоимостные показатели определялись на основе технических данных, 

а не полной финансовой модели предприятия; 

− анализ чувствительности к макроэкономическим изменениям 

(изменения курса валют, экспортные цены, налоговая нагрузка) выходит за рамки 

текущего исследования, но может быть реализован в рамках последующих работ. 

Перспективными направлениями дальнейших исследований являются: 

− интеграция внешнеэкономических факторов в модель оптимизации; 

− разработка многоуровневых моделей, учитывающих цепочки поставок 

газа; 

− расширение моделей за счёт включения параметров спроса, 

потребительских сценариев и контрактных обязательств; 

− формализация механизмов оценки операционного и стратегического 

риска в рамках стоимостной оптимизации. 

Таким образом, проведённое исследование позволяет сделать следующие 

выводы: 

1. Цель диссертационной работы достигнута: разработаны модели и 

методы, обеспечивающие стоимостную оптимизацию потоков природного газа на 

краткосрочном горизонте планирования. 

2. Все поставленные задачи успешно решены, а полученные результаты 

обладают как научной новизной, так и высокой прикладной значимостью. 

3. Предложенные инструменты и подходы применимы в реальной 

практике предприятий газовой отрасли и могут стать основой для дальнейшей 

цифровизации процессов управления. 

4. Результаты исследования вносят вклад в развитие теории и практики 

экономического управления в энергетике, а также открывают возможности для 

дальнейших научных разработок в данной области. 
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